Browsing by Subject "FRET"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Near-field energy transfer into silicon inversely proportional to distance using quasi-2D colloidal quantum well donors(Wiley-VCH Verlag GmbH & Co. KGaA, 2021-09-12) Humayun, Muhammad Hamza; Hernandez-Martinez, Pedro Ludwig; Gheshlaghi, Negar; Erdem, Onur; Altıntaş, Yemliha; Shabani, Farzan; Demir, Hilmi VolkanSilicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2O3) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d−1 with 25% efficiency at a donor–acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.Item Open Access Near-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/cdS nanoplatelets to a monolayer of MoS2(American Chemical Society, 2018) Taghipour, N.; Martinez, P. L. H.; Ozden, A.; Olutas M.; Dede, D.; Gungor K.; Erdem, O.; Perkgoz, N. K.; Demir, Hilmi VolkanA hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS2 monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.4 to 268 ns-1. Using an Al2O3 separating layer between CdSe/CdS and MoS2 with thickness tuned from 5 to 1 nm, we found that FRET takes place 7- to 88-fold faster than the Auger recombination in CdSe-based NPLs. Our measurements reveal that the FRET rate scales down with d-2 for the donor of CdSe/CdS NPLs and the acceptor of the MoS2 monolayer, d being the center-to-center distance between this FRET pair. A full electromagnetic model explains the behavior of this d-2 system. This scaling arises from the delocalization of the dipole fields in the ensemble thin film of the NPLs and full distribution of the electric field across the layer of MoS2. This d-2 dependency results in an extraordinarily long Förster radius of ∼33 nm.Item Open Access Synthesis and characterizations of conjugated oligomers and nanoparticles for optoelectronic and biological applications(2016-08) Köken, EmreThis project firstly aims to develop water dispersible conjugated nanoparticles by reprecipitation method for FRET based white light emission. Preliminary NPs study with only OFT Pgy and only OFVBt N3 were done in order to determine size and distribution of NPs. Overlapping optical properties of donor (OFT Pgy) and acceptor (OFVBt N3) give possibility to FRET applications. By click reaction in water, terminal sites of oligomers are connected and white emission is sealed by keeping D-A pair close. FRET based white light is widely used in optoelectronic applications such as OLEDs or more specifically WOLEDs. Since the white light covers all visible spectrum, different color emissions are obtainable depending on excitation wavelength. Various biosensor and bioimaging applications are also possible with white light emitting NPs, since they are readily and stably dispersed in water. In second part of the project, OFVBt N3 oligomer is cross-linked with di-sulfide containing crosslinker via copper catalyzed click reaction. NPs were synthesized in THF to obtain high click efficiency and redispersed in water, since the biological applications are targeted. OFVBt N3 oligomer is advantageous for bioimaging with its red emission close to IR region, since lower frequency emission overcomes the background auto-fluorescence and penetrates deeper in the body. Di-sulfide crosslinker, in addition to connecting the oligomer molecules and stabilizing NPs, provides possibility of drug delivery application. Since GSH (glutathione) or Trx (thioredoxin) like thiol bearing bio-molecules subsist in higher concentrations in tumorous tissues, di-sulfide bond can be cleaved, releasing the loaded drug from NPs. Thus, crosslinked OFVBt N3 NPs is a theranostic agent with an advantageous emission color for bio-imaging and a cleavable di-sulfide bond for drug delivery & controlled release. In last part of the study, white light emitting bi-oligomer nanoparticles were designed and obtained by using OFB Pgy and Porph N3. A quality white emission requires to cover all visible spectrum and overlapping optical properties of OFB Pgy (D) and Porph N3 (A) is used to white light emission by FRET. The purpose of clicking the oligomer pair is to stabilize the FRET efficiency. Moreover, using THF as the solvent is not only facilitated a better click chemistry, but also provided ease of applicability for solid state white light applications. Since THF evaporates easily, white light emitting NPs can form film on various surfaces. Thus, these NPs requires no host layer and can be applied directly to electrode surface when optoelectronic applications e.g. OLEDs or WOLEDs are considered.