BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "FOG"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Implementation of digital detection scheme for fiber optic gyroscope
    (2013) Öğüt, Serdar
    Fiber optic gyroscope (FOG) is a kind of inertial sensor that can be used for navigation, control and guidance of air, naval, land and space vehicles. A FOG measures rotation rate dependent on phase difference between two counterpropagating light waves through a rotating fiber loop. In this thesis, the main principles of FOG such as Sagnac effect and reciprocity are described. The optical scheme consists of a broadband light source, a coupler, a polarizer, an integrated optic chip and a fiber coil, is developed and established. The modulation and demodulation techniques used in FOG are also investigated in detail. The digital detection system is built with a photodetector, a transimpedance amplifier, a voltage amplifier and a data acquisition (DAQ) system. A transceiver module and an FPGA processor are the components of DAQ system. The modulation and demodulation processes are implemented by using LabVIEW FPGA module. The program created in LabVIEW environment allows to characterize scale factor and phase modulator parameters. Rotation rate measurements are performed and analyzed by Allan variance method. The impacts of different noise types to the performance of FOG are analyzed. Angle random walk (ARW), noise component to determine short-term accuracy of FOG, is reduced by integration of spike-free signal. We also show that we obtain similar noise parameters even if the output power of the system is very low. It is proven and tested that ARW is reduced by the optimization of modulation depth. Theoretical and experimental results are quite consistent at every stages of the work.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Reduction in temperature-dependent fiber-optic gyroscope bias drift by using multifunctional integrated optical chip fabricated on pre-annealed LiNbO₃
    (MDPI AG, 2024-12-11) Karagöz, Ercan; Aşık, Fatma Yasemin; Gökkavas, Mutlu; Akbaş, Erkut Emin; Yertutanol, Aylin; Özbay, Ekmel; Özcan, Sadan
    The refractive index change obtained after annealed proton exchange (APE) in lithium niobate (LiNbO₃) crystals depends on both the proton exchange process carried out in hot acid and the structure of the crystals. In devices produced by the APE method, dislocations and lattice defects within the crystal structure are considered to be primary contributors to refractive index discontinuities and waveguide instability. In this study, the effects of pre-annealing LiNbO₃ crystals at 500 °C on multifunctional integrated optical chips (MIOCs) were investigated through interferometric fiber-optic gyroscope (IFOG) system-level tests. It was observed that the pre-annealing process resulted in an improvement in the optical throughput of MIOCs (from 34% to 51%) and the temperature-dependent bias drift stability of the IFOG (from 0.031–0.038°/h to 0.012–0.019°/h). The angle random walk (ARW) was measured as 0.0056 deg/√h.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback