Browsing by Subject "Experimental verification"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Electrical properties from photoinduced charging on Cd-doped (100) surfaces of CuInSe2 epitaxial thin films(AVS Science and Technology Society, 2016) Johnson, N.; Aydogan, P.; Süzer, Şefik; Rockett, A.The photoresponse of Cd-doped CuInSe2 (CIS) epitaxial thin films on GaAs(100) was studied using x-ray photoelectron spectroscopy under illumination from a 532 nm laser between sample temperatures of 28-260 °C. The initial, air-exposed surface shows little to no photoresponse in the photoelectron binding energies, the Auger electron kinetic energies or peak shapes. Heating between 50 and 130 °C in the analysis chamber results in enhanced n-type doping at the surface and an increased light-induced binding energy shift, the magnitude of which persists when the samples are cooled to room temperature from 130 °C but which disappears when cooling from 260 °C. Extra negative charge trapped on the Cu and Se atoms indicates deep trap states that dissociate after cooling from 260 °C. Analysis of the Cd modified Auger parameter under illumination gives experimental verification of electron charging on Cd atoms thought to be shallow donors in CIS. The electron charging under illumination disappears at 130 °C but occurs again when the sample is cooled to room temperature.Item Open Access Experimental verification of metamaterial based subwavelength microwave absorbers(American Institute of Physics, 2010-10-29) Alici, K. B.; Bilotti, F.; Vegni, L.; Özbay, EkmelWe designed, implemented, and experimentally characterized electrically thin microwave absorbers by using the metamaterial concept. The absorbers consist of (i) a metal back plate and an artificial magnetic material layer; (ii) metamaterial back plate and a resistive sheet layer. We investigated absorber performance in terms of absorbance, fractional bandwidth, and electrical thickness, all of which depend on the dimensions of the metamaterial unit cell and the distance between the back plate and metamaterial layer. As a proof of concept, we demonstrated a λ/4.7 thick absorber of type I, with a 99.8% absorption peak along with a 8% fractional bandwidth. We have shown that as the electrical size of the metamaterial unit cell decreases, the absorber electrical thickness can further be reduced. We investigated this concept by using two different magnetic metamaterial inclusions: the split-ring resonator (SRR) and multiple SSR (MSRR). We have also demonstrated experimentally a λ/4.7 and a λ/4.2 thick absorbers of type II, based on SRR and MSRR magnetic metamaterial back plates, respectively. The absorption peak of the SRR layout is 97.4%, while for the MSRR one the absorption peak is 98.4%. The 10 dB bandwidths were 9.9% and 9.6% for the SRR and MSRR cases, respectively.Item Open Access LSPR enhanced MSM UV photodetectors(IOP Publishing, 2012-10-18) Butun, S.; Cinel, N. A.; Özbay, EkmelWe fabricated localized surface plasmon resonance enhanced UV photodetectors on MOCVD grown semi-insulating GaN. Plasmonic resonance in the UV region was attained using 36nm diameter Al nanoparticles. Extinction spectra of the nanoparticles were measured through spectral transmission measurements. A resonant extinction peak around 300nm was obtained with Al nanoparticles. These particles gave rise to enhanced absorption in GaN at 340nm. Spectral responsivity measurements revealed an enhancement factor of 1.5. These results provided experimental verification for obtaining field enhancement by using Al nanoparticles on GaN.Item Open Access Simple test for hidden variables in spin-1 systems(2008) Klyachko, A. A.; Can, M. A.; Binicioǧlu, S.; Shumovsky, A. S.We resolve an old problem about the existence of hidden parameters in a three-dimensional quantum system by constructing an appropriate Bell's type inequality. This reveals the nonclassical nature of most spin-1 states. We shortly discuss some physical implications and an underlying cause of this nonclassical behavior, as well as a perspective of its experimental verification. © 2008 The American Physical Society.