BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Experimental analysis"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    3D modeling of on-chip acoustophoretic particle manipulation in a polymer microfluidic device
    (Chemical and Biological Microsystems Society, 2016) Çaǧatay, E.; Özer, M. B.; Çetin, Barbaros
    This study focuses on understanding of the sensitivities of the acoustophoretic process on uncertainties/errors in the geometric properties of the chip material and the piezoelectric actuators. The sensitivity of the acoustophoretic process is investigated both numerically and experimentally. For the numerical simulations a three dimensional finite element model is used. In the experimental analysis, a microfluidic chip with two stations is used. The first station has the accurate geometric values of the design and the second station has the introduced error in a geometric parameter so that the effect of this error can be demonstrated on the same chip and the channel.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Micro electro discharge machining of tungsten carbide and polycrystalline diamond : an experimental analysis of process parameters
    (2013) Özdemir, Cem
    Electro discharge machining (EDM) is a manufacturing process where material removal is realized through electrical discharges between two conductive materials without applying any external forces. As a result, high aspect ratio micro features on difficult-to-cut materials such as tungsten carbide and polycrystalline diamond can be obtained. In this study, influences of micro-EDM process parameters such as voltage, capacitance, and rotational speed on material removal rate and surface quality have been investigated using experimental techniques. Experimental results have revealed that capacitance and voltage applied during EDM process have significant effects on material removal rate and surface roughness. Regression models have been calculated to represent the relationships between process inputs and outputs which can be used to calculate processing time and to predict surface finish. In addition, a process planning software for wire-EDM process, which is capable of generating necessary tool paths during fabrication of micro tools, has been developed. The software is also capable of producing the solid model of the micro tools which can be utilized in computer aided engineering applications.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback