Browsing by Subject "Exciton transfer"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Critical role of CdSe nanoplatelets in color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes(OSA - The Optical Society, 2016) Hasanov N.; Sharma, V. K.; Martinez, P. L. H.; Tan S.T.; Demir, Hilmi VolkanHere we report CdSe nanoplatelets that are incorporated into color-converting CdSe/ZnS nanocrystals for InGaN/GaN light-emitting diodes. The critical role of CdSe nanoplatelets as an exciton donor for the color conversion was experimentally investigated. The power conversion efficiency of the hybrid light-emitting diode was found to increase by 23% with the incorporation of the CdSe nanoplatelets. The performance enhancement is ascribed to efficient exciton transfer from the donor CdSe nanoplatelet quantum wells to the acceptor CdSe/ZnS nanocrystal quantum dots through F�rster-type nonradiative resonance energy transfer.Item Open Access Enhanced exciton transfer from the cascaded bilayer of green-and red-emitting CdTe quantum dots into bulk silicon(Optical Society of America, 2013) Yeltik, Aydan; Güzeltürk, Burak; Demir, Hilmi VolkanWe show enhanced transfer of excitons from the energy-gradient of bilayered green/red-emitting quantum dots into silicon using cascaded nonradiative energy with an overall enhancement factor of 1.3 at room temperature for solar cell sensitization. © 2013 The Optical Society.Item Open Access Exciton transfering macrocrystals of colloidal quantum dots(2013) Akcalı, İbrahimFor nonradiative energy transfer (NRET) in the field of medicine and biology as well as optoelectronics, recent advances in the fluorophores, and optical techniques and devices have led to greatly increased interest in applications employing NRET in the past decade. Replacing traditional fluorophores, colloidal quantum dots have flourished the fluorescence properties of NRETbased applications. This has also given rise to working with narrower tunable emission at a higher quantum yield with broadband absorption, and easier handling and fabrication compared to those of traditional fluorophores. A newly discovered technique, QD incorporation into macrocrystals of various salts, has enhanced the processability, photostability and robustness of these colloidal QDs. To benefit from these enhanced properties for NRET, this thesis proposed and studied macrocrystals for exciton transfer via NRET and fabricated those considering NRET mechanism. The design of these QD-embedded macrocrystal structures has enabled strong energy transfer. The experimentally measured energy transfer reached ~51%, which was obtained with careful optimization. Moreover, these hybrid structures have allowed for the observation of the QD distribution dependence of the transfer efficiency for the QDs wrapped inside macrocrystals. The steady state and time-resolved measurements in this thesis revealed that QD-incorporated macrocrystals can possibly take place of QDs in various NRET-related applications.Item Open Access Excitonic energy transfer dynamics in hybrid organic/inorganic nanocomposites at high loading levels(Optical Society of America, 2012) Güzeltürk, Burak; Hernandez-Martinez, Pedro L.; Tuncel, Dönüş; Demir, Hilmi VolkanTemperature dependent exciton migration in the hybrid nanocomposites of conjugated polymers chemically integrated with quantum dots is studied at high loading levels. The underlying interplay between the exciton transfer and diffusion is revealed. © OSA 2012.Item Open Access Green stimulated emission boosted by nonradiative resonant energy transfer from blue quantum dots(American Chemical Society, 2016) Gao, Y.; Yu, G.; Wang Y.; Dang C.; Sum, T. C.; Sun, H.; Demir, Hilmi VolkanThanks to their tunability and versatility, the colloidal quantum dots (CQDs) made of II-VI semiconductor compound offer the potential to bridge the "green gap" in conventional semiconductors. However, when the CQDs are pumped to much higher initial excitonic states compared to their bandgap, multiexciton interaction is enhanced, leading to a much higher stimulated emission threshold. Here, to circumvent this drawback, for the first time, we show a fully colloidal gain in green enabled by a partially indirect pumping approach assisted by Förster resonance energy transfer process. By introducing the blue CQDs as exciton donors, the lasing threshold of the green CQDs, is reduced dramatically. The blue CQDs thus serve as an energy-transferring buffer medium to reduce excitation energy from pumping photons in a controlled way by injecting photoinduced excitons into green CQDs. Our newly developed colloidal pumping scheme could enable efficient CQD lasers of full visible colors by a single pump source and cascaded exciton transfer. This would potentially pave the way for an efficient multicolor laser for lighting and display applications.Item Open Access Study of exciton transfer in dense quantum dot nanocomposites(Royal Society of Chemistry, 2014) Guzelturk, B.; Hernandez-Martinez, P. L.; Sharma, V. K.; Coskun, Y.; Ibrahimova, V.; Tuncel, D.; Govorov, A. O.; Sun, X. W.; Xiong, Q.; Demir, Hilmi VolkanNanocomposites of colloidal quantum dots (QDs) integrated into conjugated polymers (CPs) are key to hybrid optoelectronics, where engineering the excitonic interactions at the nanoscale is crucial. For such excitonic operation, it was believed that exciton diffusion is essential to realize nonradiative energy transfer from CPs to QDs. In this study, contrary to the previous literature, efficient exciton transfer is demonstrated in the nanocomposites of dense QDs, where exciton transfer can be as efficient as 80% without requiring the assistance of exciton diffusion. This is enabled by uniform dispersion of QDs at high density (up to ∼70 wt%) in the nanocomposite while avoiding phase segregation. Theoretical modeling supports the experimental observation of weakly temperature dependent nonradiative energy transfer dynamics. This new finding provides the ability to design hybrid light-emitting diodes that show an order of magnitude enhanced external quantum efficiencies.