Browsing by Subject "Estimation results"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Ionospheric total electron content estimation using IONOLAB method(IEEE, 2007) Nayir, H.; Arıkan, F.; Erol, C. B.; Arıkan, OrhanIonosphere which is an important atmospheric layer for HF and satellite communications, can be investigated through Total Electron Content (TEC). Global Positioning System provides cost-effective means for TEC estimation. Regularized TEC estimation method (D-TEI) is developed to estimate high resolution, robust TEC values. The method combines measurements of GPS satellites above 10° elevation limit and estimates can be obtained with 30 s time resolution. In this paper, parameters that are used in D-TEI method such as ionospheric height, weighting function, and satellite receiver biases are studied. It is found that TEC estimation results of D-TEI method is almost independent of ionospheric height. Different weighting functions are tried and the weighting function that minimizes non-ionospheric effects is selected. By using satellite and receiver biases in the correct form consistent TEC estimation results are obtained with IGS analysis centers. In this paper, the method is improved to include phase measurements. Taking either pseudorange or phase measurements as input, high resolution, robust TEC estimates are obtained using D-TEI method.Item Open Access Optimization of F2 layer parameters using IRI-Plas model and IONOLAB Total Electron Content(IEEE, 2011) Sahin O.; Sezen, U.; Arikan F.; Arıkan, Orhan; Aktug, B.In this study, the relation of the maximum ionization height (HmF2) and the critical frequency (FoF2) of F2 layer is examined within their parametric range through the International Reference Ionosphere extended towards the plasmasphere (IRI-Plas) model and the IONOLAB-TEC (Total Electron Content) observations. HmF2 and FoF2 are optimized using an iterational loop through Non-Linear Least Squares method by also using a physical relation constraint between these two parameters. Performance evaluation of optimization algorithm is performed separately for the cases running IRI-Plas with optimized parameters and TEC input; only with optimized parameters; only with TEC and finally with no optimized parameter and TEC input. As a conclusion, it is seen that using optimized parameters and TEC together as input produces best IRI-TEC estimates. But also using only optimized parameters (without TEC update) gives estimates with also very low RMS errors and is suitable to use in optimizations. HmF2 and FoF2 estimates are obtained separately for a quiet day, positively corrupted day, negatively corrupted day, a northern latitude and a southern latitude. HmF2 and FoF2 estimation results are compared with ionosonde data where available. This study enables the modification and update of empirical and deterministic IRI Model to include instantaneous variability of the ionosphere. © 2011 IEEE.