BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Erythemato-Squamous"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An expert system for the differential diagnosis of erythemato-squamous diseases
    (Elsevier, 2000) Güvenir, H. A.; Emeksiz, N.
    This paper presents an expert system for differential diagnosis of erythemato-squamous diseases incorporating decisions made by three classification algorithms: nearest neighbor classifier, naive Bayesian classifier and voting feature intervals-5. This tool enables doctors to differentiate six types of erythemato-squamous diseases using clinical and histopathological parameters obtained from a patient. The program also gives explanations for the classifications of each classifier. The patient records are also maintained in a database for further references. (C) 2000 Elsevier Science Ltd. All rights reserved.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Learning differential diagnosis of erythemato-squamous diseases using voting feature intervals
    (Elsevier, 1998) Güvenir, H. A.; Demiröz, G.; İlter, N.
    A new classification algorithm, called VFI5 (for Voting Feature Intervals), is developed and applied to problem of differential diagnosis of erythemato-squamous diseases. The domain contains records of patients with known diagnosis. Given a training set of such records, the VFI5 classifier learns how to differentiate a new case in the domain. VFI5 represents a concept in the form of feature intervals on each feature dimension separately. classification in the VFI5 algorithm is based on a real-valued voting. Each feature equally participates in the voting process and the class that receives the maximum amount of votes is declared to be the predicted class. The performance of the VFI5 classifier is evaluated empirically in terms of classification accuracy and running time. (C) 1998 Elsevier Science B.V. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback