Browsing by Subject "Epigraph sets"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Denoising images corrupted by impulsive noise using projections onto the epigraph set of the total variation function (PES-TV)(Springer U K, 2015) Tofighi M.; Kose, K.; Çetin, A. EnisIn this article, a novel algorithm for denoising images corrupted by impulsive noise is presented. Impulsive noise generates pixels whose gray level values are not consistent with the neighboring pixels. The proposed denoising algorithm is a two-step procedure. In the first step, image denoising is formulated as a convex optimization problem, whose constraints are defined as limitations on local variations between neighboring pixels. We use Projections onto the Epigraph Set of the TV function (PES-TV) to solve this problem. Unlike other approaches in the literature, the PES-TV method does not require any prior information about the noise variance. It is only capable of utilizing local relations among pixels and does not fully take advantage of correlations between spatially distant areas of an image with similar appearance. In the second step, a Wiener filtering approach is cascaded to the PES-TV-based method to take advantage of global correlations in an image. In this step, the image is first divided into blocks and those with similar content are jointly denoised using a 3D Wiener filter. The denoising performance of the proposed two-step method was compared against three state-of-the-art denoising methods under various impulsive noise models.Item Open Access Phase and TV based convex sets for blind deconvolution of microscopic images(Institute of Electrical and Electronics Engineers Inc., 2016) Tofighi M.; Yorulmaz, O.; Köse K.; Yıldırım, D. C.; Çetin-Atalay R.; Çetin, A. EnisIn this paper, two closed and convex sets for blind deconvolution problem are proposed. Most blurring functions in microscopy are symmetric with respect to the origin. Therefore, they do not modify the phase of the Fourier transform (FT) of the original image. As a result blurred image and the original image have the same FT phase. Therefore, the set of images with a prescribed FT phase can be used as a constraint set in blind deconvolution problems. Another convex set that can be used during the image reconstruction process is the Epigraph Set of Total Variation (ESTV) function. This set does not need a prescribed upper bound on the Total Variation (TV) of the image. The upper bound is automatically adjusted according to the current image of the restoration process. Both the TV of the image and the blurring filter are regularized using the ESTV set. Both the phase information set and the ESTV are closed and convex sets. Therefore they can be used as a part of any blind deconvolution algorithm. Simulation examples are presented.