Browsing by Subject "Environmental monitoring"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A framework for use of wireless sensor networks in forest fire detection and monitoring(Elsevier Ltd., 2012) Aslan, Y. E.; Korpeoglu, I.; Ulusoy, T.Forest fires are one of the main causes of environmental degradation nowadays. Current surveillance systems for forest fires lack in supporting real-time monitoring of every point of a region at all times and early detection of fire threats. Solutions using wireless sensor networks, on the other hand, can gather sensory data values, such as temperature and humidity, from all points of a field continuously, day and night, and, provide fresh and accurate data to the fire-fighting center quickly. However, sensor networks face serious obstacles like limited energy resources and high vulnerability to harsh environmental conditions, that have to be considered carefully. In this paper, we propose a comprehensive framework for the use of wireless sensor networks for forest fire detection and monitoring. Our framework includes proposals for the wireless sensor network architecture, sensor deployment scheme, and clustering and communication protocols. The aim of the framework is to detect a fire threat as early as possible and yet consider the energy consumption of the sensor nodes and the environmental conditions that may affect the required activity level of the network. We implemented a simulator to validate and evaluate our proposed framework. Through extensive simulation experiments, we show that our framework can provide fast reaction to forest fires while also consuming energy efficiently. © 2012 Elsevier Ltd.Item Open Access Highly sensitive determination of 2, 4, 6-trinitrotoluene and related byproducts using a diol functionalized column for high performance liquid chromatography(Public Library of Science, 2014) Gumuscu, B.; Erdogan, Z.; Güler, Mustafa O.; Tekinay, T.In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 μg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. © 2014 Gumuscu et al.