Browsing by Subject "Enhanced Transmission"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Characterization and applications of negative-index metamaterials(2008) Aydın, KorayMetamaterials offer novel electromagnetic properties and promising applications including negative refraction, flat-lenses, superlenses, cloaking devices. In this thesis, we characterized the negative-index metamaterials that is composed of periodic arrangements of split-ring resonators (providing negative permeability) and thin wire (providing negative permittivity) arrays. The resonances of split-ring resonators (SRR) are investigated experimentally and theoretically. By combining SRR and wire arrays together, we observed a transmission band where both permittivity and permeability are simultaneously negative, indicating a left-handed behavior. Reflection measurements reveal that the impedance is matched to the free space at a certain frequency range. The lefthanded metamaterial is also shown to exhibit negative refractive index by using three different experimental methods namely, refraction from a wedge-shaped negative-index metamaterial (NIM), beam-shift from a slab-shaped NIM and phase shift from NIMs with different lengths. Flat-lens behavior is observed from a slabshaped negative-index metamaterial based microwave lenses. Furthermore, we demonstrated subwavelength imaging and subwavelength resolution by using thin superlenses constructed from SRR-wire arrays with an effective negative index. We have been able to image a point source with a record-level, λ/8 resolution. SRRand wire arrays exhibit negative index provided that the wave propagates parallel to the plane of SRR structure which makes it hard to fabricate at higher frequencies. An alternative structure called fishnet metamaterial however could yield negative index with wave propagation normal to the structure. We observed left-handed transmission and negative phase velocity in fishnet type metamaterials. Finally, we studied enhanced transmission from a single subwavelength aperture by coupling incident electromagnetic wave to a single SRR placed at the near-field of the aperture.Item Open Access Novel plasmonic devices for nano-photonics applications(2013) Şahin, LeventPlasmonics have attracted a great deal of interest because of their potential to design novel photonics devices which have unique optical properties. This dissertation focuses on novel plasmonic device designs for photonics applications. Electromagnetic properties of metamaterials are characterized and the resonance mechanism of Split Ring Resonator (SRR) structure is investigated. Furthermore, novel SRR-based metamaterial structures are studied. We demonstrated the significant plasmonic enhancement in the transmission characteristics through a sub-wavelength aperture by utilizing SRR resonances. Electrical tuning of plasmonic resonance with varying gate bias by using graphene is observed. Also, electrical properties of graphene is investigated. Fabrication of electrically gated graphene based plasmonic structures are realized. In addition, we utilized metamaterials to design novel photonic devices and we experimentally studied and numerically verified the novel propagation characteristics of graphene-based photonic devices and 3D nanostructures. The proposed structures are designed, simulated, fabricated and measured. The simulations and experimental results are in good agreement and shows significant enhancement of transmission characteristics of plasmonic devices. The dimensions of the structures that are designed in our work is less than 10 times smaller than the incident wavelength (r/λ~0.1) which is a desired property for enhanced light confinement of sensors. Also, the gate tuning of SRR's plasmonic resonance is the first demonstration in the contemporary literature according to our knowledge.