Browsing by Subject "Emerging technologies"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Colloidal nanophotonics: The emerging technology platform(OSA - The Optical Society, 2016) Gaponenko S.; Demir, Hilmi Volkan; Seassal C.; Woggon U.Dating back to decades or even centuries ago, colloidal nanophotonics during the last ten years rapidly extends towards light emitting devices, lasers, sensors and photonic circuitry to manifest itself as an emerging technology platform rather than an entirely academic research field. ©2016 Optical Society of America.Item Open Access Multi-temperature zone droplet-based microreactor for increased temperature control in nanoparticle synthesis(Wiley-VCH Verlag, 2014) Erdem, E. Y.; Cheng, J. C.; Doyle, F. M.; Pisano, A. P.Microreactors are an emerging technology for the controlled synthesis of nanoparticles. The Multi-Temperature zone Microreactor (MTM) described in this work utilizes thermally isolated heated and cooled regions for the purpose of separating nucleation and growth processes as well as to provide a platform for a systematic study on the effect of reaction conditions on nanoparticle synthesis.Item Open Access Network-aware virtual machine placement in cloud data centers with multiple traffic-intensive components(Elsevier BV, 2015) Ilkhechi, A. R.; Korpeoglu, I.; Ulusoy, ÖzgürFollowing a shift from computing as a purchasable product to computing as a deliverable service to consumers over the Internet, cloud computing has emerged as a novel paradigm with an unprecedented success in turning utility computing into a reality. Like any emerging technology, with its advent, it also brought new challenges to be addressed. This work studies network and traffic aware virtual machine (VM) placement in a special cloud computing scenario from a provider's perspective, where certain infrastructure components have a predisposition to be the endpoints of a large number of intensive flows whose other endpoints are VMs located in physical machines (PMs). In the scenarios of interest, the performance of any VM is strictly dependent on the infrastructure's ability to meet their intensive traffic demands. We first introduce and attempt to maximize the total value of a metric named "satisfaction" that reflects the performance of a VM when placed on a particular PM. The problem of finding a perfect assignment for a set of given VMs is NP-hard and there is no polynomial time algorithm that can yield optimal solutions for large problems. Therefore, we introduce several off-line heuristic-based algorithms that yield nearly optimal solutions given the communication pattern and flow demand profiles of subject VMs. With extensive simulation experiments we evaluate and compare the effectiveness of our proposed algorithms against each other and also against naïve approaches.