Browsing by Subject "Embryo"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Characterization of a novel zebrafish (Danio rerio) gene, wdr81, associated with cerebellar ataxia, mental retardation and dysequilibrium syndrome (CAMRQ)(BioMed Central Ltd., 2015) Doldur-Balli, F.; Ozel, M. N.; Gulsuner, S.; Tekinay, A. B.; Ozcelik, T.; Konu, O.; Adams, M. M.Background: WDR81 (WD repeat-containing protein 81) is associated with cerebellar ataxia, mental retardation and disequilibrium syndrome (CAMRQ2, [MIM 610185]). Human and mouse studies suggest that it might be a gene of importance during neurodevelopment. This study aimed at fully characterizing the structure of the wdr81 transcript, detecting the possible transcript variants and revealing its expression profile in zebrafish, a powerful model organism for studying development and disease. Results: As expected in human and mouse orthologous proteins, zebrafish wdr81 is predicted to possess a BEACH (Beige and Chediak-Higashi) domain, a major facilitator superfamily domain and WD40-repeats, which indicates a conserved function in these species. We observed that zebrafish wdr81 encodes one open reading frame while the transcript has one 5' untranslated region (UTR) and the prediction of the 3' UTR was mainly confirmed along with a detected insertion site in the embryo and adult brain. This insertion site was also found in testis, heart, liver, eye, tail and muscle, however, there was no amplicon in kidney, intestine and gills, which might be the result of possible alternative polyadenylation processes among tissues. The 5 and 18 hpf were critical timepoints of development regarding wdr81 expression. Furthermore, the signal of the RNA probe was stronger in the eye and brain at 18 and 48 hpf, then decreased at 72 hpf. Finally, expression of wdr81 was detected in the adult brain and eye tissues, including but not restricted to photoreceptors of the retina, presumptive Purkinje cells and some neurogenic brains regions. Conclusions: Taken together these data emphasize the importance of this gene during neurodevelopment and a possible role for neuronal proliferation. Our data provide a basis for further studies to fully understand the function of wdr81.Item Open Access Functionally conserved effects of rapamycin exposure on zebrafish(Spandidos Publications, 2016-03) Sucularli, C.; Shehwana, H.; Kuscu, C.; Dungul, D. C.; Ozdag, H.; Konu, O.Mechanistic target of rapamycin (mTOR) is a conserved serine/threonine kinase important in cell proliferation, growth and protein translation. Rapamycin, a well-known anti-cancer agent and immunosuppressant drug, inhibits mTOR activity in different taxa including zebrafish. In the present study, the effect of rapamycin exposure on the transcriptome of a zebrafish fibroblast cell line, ZF4, was investigated. Microarray analysis demonstrated that rapamycin treatment modulated a large set of genes with varying functions including protein synthesis, assembly of mitochondrial and proteasomal machinery, cell cycle, metabolism and oxidative phosphorylation in ZF4 cells. A mild however, coordinated reduction in the expression of proteasomal and mitochondrial ribosomal subunits was detected, while the expression of numerous ribosomal subunits increased. Meta-analysis of heterogeneous mouse rapamycin microarray datasets enabled the comparison of zebrafish and mouse pathways modulated by rapamycin, using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology pathway analysis. The analyses demonstrated a high degree of functional conservation between zebrafish and mice in response to rapamycin. In addition, rapamycin treatment resulted in a marked dose-dependent reduction in body size and pigmentation in zebrafish embryos. The present study is the first, to the best of our knowledge, to evaluate the conservation of rapamycin-modulated functional pathways between zebrafish and mice, in addition to the dose-dependent growth curves of zebrafish embryos upon rapamycin exposure.Item Open Access Mutations in RAD21 disrupt regulation of apob in patients with chronic intestinal pseudo-obstruction(W.B. Saunders, 2015) Bonora, E.; Bianco, F.; Cordeddu, L.; Bamshad, M.; Francescatto, L.; Dowless, D.; Stanghellini, V.; Cogliandro, R. F.; Lindberg, G.; Mungan, Z.; Cefle, K.; Ozcelik, T.; Palanduz, S.; Ozturk, S.; Gedikbasi, A.; Gori, A.; Pippucci, T.; Graziano, C.; Volta, U.; Caio, G.; Barbara, G.; D'Amato, M.; Seri, M.; Katsanis, N.; Romeo, G.; De Giorgio, R.Background Aims Chronic intestinal pseudo-obstruction (CIPO) is characterized by severe intestinal dysmotility that mimics a mechanical subocclusion with no evidence of gut obstruction. We searched for genetic variants associated with CIPO to increase our understanding of its pathogenesis and to identify potential biomarkers. Methods We performed whole-exome sequencing of genomic DNA from patients with familial CIPO syndrome. Blood and lymphoblastoid cells were collected from patients and controls (individuals without CIPO); levels of messenger RNA (mRNA) and proteins were analyzed by quantitative reverse-transcription polymerase chain reaction, immunoblot, and mobility shift assays. Complementary DNAs were transfected into HEK293 cells. Expression of rad21 was suppressed in zebrafish embryos using a splice-blocking morpholino (rad21a). Gut tissues were collected and analyzed. Results We identified a homozygous mutation (p.622, encodes Ala>Thr) in RAD21 in patients from a consanguineous family with CIPO. Expression of RUNX1, a target of RAD21, was reduced in cells from patients with CIPO compared with controls. In zebrafish, suppression of rad21a reduced expression of runx1; this phenotype was corrected by injection of human RAD21 mRNA, but not with the mRNA from the mutated p.622 allele. rad21a Morpholino zebrafish had delayed intestinal transit and greatly reduced numbers of enteric neurons, similar to patients with CIPO. This defect was greater in zebrafish with suppressed expression of ret and rad21, indicating their interaction in the regulation of gut neurogenesis. The promoter region of APOB bound RAD21 but not RAD21 p.622 Ala>Thr; expression of wild-type RAD21 in HEK293 cells repressed expression of APOB, compared with control vector. The gut-specific isoform of APOB (APOB48) is overexpressed in sera from patients with CIPO who carry the RAD21 mutation. APOB48 also is overexpressed in sporadic CIPO in sera and gut biopsy specimens. Conclusions Some patients with CIPO carry mutations in RAD21 that disrupt the ability of its product to regulate genes such as RUNX1 and APOB. Reduced expression of rad21 in zebrafish, and dysregulation of these target genes, disrupts intestinal transit and the development of enteric neurons.Item Open Access RNA based biomarkers for prediction of the endometrial window of implantation(2020-12) Dedeoğlu, EgeEarly reproductive failure is the most common issue related to successful pregnancies, as around 30% of all conceptions reach live birth. The path to a successful pregnancy is reliant on the successful implantation of the embryo to the endometrium. This event requires three major components; a viable embryo ready for implantation, a receptive endometrium in which the implantation will occur, and healthy crosstalk between the embryo and receptive endometrium. It is estimated that two out of all three implantation failures are related to endometrial origin. This has led many researchers to attempt to elucidate the mechanism behind endometrial receptivity and generate a prediction of successful implantation of endometrial origin. Although there have been plenty of articles on this subject, there is still no consensus regarding standard endometrial receptivity biomarkers. Additionally, most of these articles’ findings cannot find their way into clinics. This is highlighted by the fact that the success rate of embryo implantation in ART applied in clinics is only around 10%. This study aimed to identify novel methods and biomarkers to predict the endometrium's receptivity, which could be applied in clinics easier and faster than the current kits in the market. We took several different approaches to achieve this aim. The first was to identify and validate particular miRNAs that showed a change in expression levels of the different days of the endometrial cycle in a healthy women’s serum. Our bioinformatical analysis has yielded ten miRNAs that show statistical differences in the human endometrium and being expressed in the serum. Downstream RNA-Seq and qPCR experiments have validated specific miRNAs previously predicted and identified novel miRNAs used for this purpose. The second was using in silico methods, identifying novel genes present in the endometrium that can predict the optimal point of receptivity. If considered and validated in vitro, this novel gene-list will be a cheaper but still as powerful alternative to the current endometrial test kit used in clinics today. Further validation RNA-Seq experiments on healthy and infertile females will elucidate our novel biomarkers' strength, designed to be used in ART clinics worldwide. Furthermore, upon building on these findings, it is possible to uncover previously overlooked mechanisms leading to women's implantation success.