Browsing by Subject "Electronic warfare"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Automatic radar antenna scan type recognition in electronic warfare(Institute of Electrical and Electronics Engineers, 2011-10-04) Barshan, B.; Eravci, B.We propose a novel and robust algorithm for antenna scan type (AST) recognition in electronic warfare (EW). The stages of the algorithm are scan period estimation, preprocessing (normalization, resampling, averaging), feature extraction, and classification. Naive Bayes (NB), decision-tree (DT), artificial neural network (ANN), and support vector machine (SVM) classifiers are used to classify five different ASTs in simulation and real experiments. Classifiers are compared based on their accuracy, noise robustness, and computational complexity. DT classifiers are found to outperform the others.Item Open Access Deep learning in electronic warfare systems: Automatic intra-pulse modulation recognition(Institute of Electrical and Electronics Engineers, 2018) Akyön, Fatih Çağatay; Alp, Y. K.; Gök, G.; Arıkan, OrhanDetection and classification of radars in electronic warfare systems is a major problem. In this work, we propose a novel deep learning based method that automatically recognizes intra-pulse modulation types of radar signals. We use reassigned short-time Fourier transforms of measured signals and detected outliers of the phase differences using robust least squares to train a hybrid structured convolutional neural network to distinguish frequency and phase modulated signals. Simulation results show that the developed method highly outperforms the current state-of-the-art methods in the literature.Item Open Access Deep learning in electronic warfare systems: automatic pulse detection and intra-pulse modulation recognition(2020-12) Akyon, Fatih CagatayDetection and classification of radar systems based on modulation analysis on pulses they transmit is an important application in electronic warfare systems. Many of the present works focus on classifying modulations assuming signal detection is done beforehand without providing any detection method. In this work, we propose two novel deep-learning based techniques for automatic pulse detection and intra-pulse modulation recognition of radar signals. As the first nechnique, an LSTM based multi-task learning model is proposed for end-to-end pulse detection and modulation classification. As the second technique, re-assigned spectrogram of measured radar signal and detected outliers of its instantaneous phases filtered by a special function are used for training multiple convolutional neural networks. Automatically extracted features from the networks are fused to distinguish frequency and phase modulated signals. Another major issue on this area is the training and evaluation of supervised neural network based models. To overcome this issue we have developed an Intentional Modulation on Pulse (IMOP) measurement simulator which can generate over 15 main phase and frequency modulations with realistic pulses and noises. Simulation results show that the proposed FFCNN and MODNET techniques outperform the current stateof-the-art alternatives and is easily scalable among broad range of modulation types.Item Open Access Jamming bandits-a novel learning method for optimal jamming(Institute of Electrical and Electronics Engineers Inc., 2016) Amuru, S.; Tekin, C.; Van Der Schaar, M.; Buehrer, R.M.Can an intelligent jammer learn and adapt to unknown environments in an electronic warfare-type scenario? In this paper, we answer this question in the positive, by developing a cognitive jammer that adaptively and optimally disrupts the communication between a victim transmitter-receiver pair. We formalize the problem using a multiarmed bandit framework where the jammer can choose various physical layer parameters such as the signaling scheme, power level and the on-off/pulsing duration in an attempt to obtain power efficient jamming strategies. We first present online learning algorithms to maximize the jamming efficacy against static transmitter-receiver pairs and prove that these algorithms converge to the optimal (in terms of the error rate inflicted at the victim and the energy used) jamming strategy. Even more importantly, we prove that the rate of convergence to the optimal jamming strategy is sublinear, i.e., the learning is fast in comparison to existing reinforcement learning algorithms, which is particularly important in dynamically changing wireless environments. Also, we characterize the performance of the proposed bandit-based learning algorithm against multiple static and adaptive transmitter-receiver pairs.Item Open Access Radio communications interdiction problem(2020-01) Tanergüçlü, TürkerTactical communications have always played a pivotal role in maintaining effective command and control of troops operating in hostile, extremely fragile and dynamic battlefield environments. Radio communications, in particular, have served as the backbone of the tactical communications over the years and have proven to be very useful in meeting the information exchange needs of widely dispersed and highly mobile military units, especially in the rugged area. Considering the complexity of today’s modern warfare, and in particular the emerging threats from the latest electronic warfare technologies, the need for optimally designed radio communications networks is more critical than ever. Optimized communication network planning can minimize network vulnerabilities to modern threats and provide additional assurance of continued availability and reliability of tactical communications. To do so, we present the Radio Communications Interdiction Problem (RCIP) to identify the optimal locations of transmitters on the battlefield that will lead to a robust radio communications network by anticipating the degrading effects of intentional radio jamming attacks used by an adversary during electronic warfare. We formulate RCIP as a binary bilevel (max–min) programming problem, present the equivalent single level formulation, and propose an exact solution method using a decomposition scheme. We enhance the performance of the algorithm by utilizing dominance relations, preprocessing, and initial starting heuristics. To reflect a more realistic jamming representation, we introduce the probabilistic version of RCIP (P-RCIP) where a jamming probability is associated at each receiver site as a function of the prevalent jamming to signal ratios leading to an expected coverage of receivers as an objective function. We approximate the nonlinearity in the jamming probability function using a piecewise linear convex function and solve this version by adapting the decomposition algorithm constructed for RCIP. Our extensive computational results on realistic scenarios that reflect different phases of a military conflict show the efficacy of the proposed solution methods. We provide valuable tactical insights by analyzing optimal solutions on these scenarios under varying parameters. Finally, we investigate the incorporation of limited artillery assets into communications planning by formulizing RCIP with Artillery (RCIP-A) as a trilevel optimization problem and propose a nested decomposition method as an exact solution methodology. Additionally, we present computational results and tactical insights obtained from the solution of RCIP-A on predefined scenarios.Item Open Access Radio Communications Interdiction Problem under deterministic and probabilistic jamming(Elsevier, 2019) Tanergüçlü, Türker; Karaşan, Oya Ekin; Akgün, I.; Karaşan, EzhanThe Radio Communications Interdiction Problem (RCIP) seeks to identify the locations of transmitters on the battlefield that will lead to a robust radio communications network by anticipating the effects of intentional radio jamming attacks used by an adversary during electronic warfare. RCIP is a sequential game defined between two opponents that target each other’s military units in a conventional warfare. First, a defender locates a limited number of transmitters on the defender’s side of the battlefield to optimize the relay of information among its units. After observing the locations of radio transmitters, an attacker locates a limited number of radio jammers on the attacker’s side to disrupt the communication network of the defender. We formulate RCIP as a binary bilevel (max–min) programming problem, present the equivalent single level formulation, and propose an exact solution method using a decomposition scheme. We enhance the performance of the algorithm by utilizing dominance relations, preprocessing, and initial starting heuristics. To reflect a more realistic jamming representation, we also introduce the probabilistic version of RCIP where a jamming probability is associated at each receiver site as a function of the prevalent jamming to signal ratios leading to an expected coverage of receivers as an objective function. We approximate the nonlinearity in the jamming probability function using a piecewise linear convex function and solve this version by adapting the decomposition algorithm constructed for RCIP. Our extensive computational results on realistic scenarios show the efficacy of the solution approaches and provide valuable tactical insights.