Browsing by Subject "Electronic band structure"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Item Open Access Ab initio study of Ru-terminated and Ru-doped armchair graphene nanoribbons(Taylor and Francis, 2012) Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, EkmelWe investigate the effects of ruthenium (Ru) termination and Ru doping on the electronic properties of armchair graphene nanoribbons (AGNRs) using first-principles methods. The electronic band structures, geometries, density of states, binding energies, band gap information, and formation energies of related structures are calculated. It is well founded that the electronic properties of the investigated AGNRs are highly influenced by Ru termination and Ru doping. With Ru termination, metallic band structures with quasi-zero-dimensional, one-dimensional and quasi-one-dimensional density of states (DOS) behavior are obtained in addition to dominant one-dimensional behavior. In contrast to Ru termination, Ru doping introduces small but measurable (12.4 to 89.6meV) direct or indirect band gaps. These results may present an additional way to produce tunable band gaps in AGNRs.Item Open Access First-principles calculations of Pd-terminated symmetrical armchair graphene nanoribbons(Elsevier, 2013) Kuloglu, A. F.; Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, EkmelThe effects of Palladium (Pd) termination on the electronic properties of armchair graphene nanoribbons (AGNRs) were calculated by using ab initio calculations. After a geometric optimization process, the electronic band structures, density of states, and binding energies of AGNRs with Na = 5-15 were calculated. Pd-termination was found to significantly influence the electronic properties of AGNRs. In DOS, many Q0D and Q1D type states were observed. Binding energy (BE) for single-side or both-side Pd-terminated structures represents characteristic drops with the increasing GNR width. With the increasing GNR width, the BEs of these structures become similar to hydrogenated structures. Because of the GNR width, dependent BE also gave information on the possible stiffness information, in which all of this information can be used in studies where controlled binding to graphene is required.Item Open Access Glycine self-assembled on graphene enhances the solar absorbance performance(Elsevier, 2019) Ersan, F.; Aktürk, E.; Çıracı, SalimDespite its high solar absorbance and surface coating abilities, pristine graphene as a semimetal is not promising for photovoltaic applications. In this study, we predict that Glycine (Gly), an amino acid, which is normally bound to pristine graphene by a weak van der Waals attraction, can form an organic coating durable to ambient condition when adsorbed on vacancy patterned graphene surface. Moreover, adsorbed Gly coating induces metal-insulator transition and concomitantly increases the solar absorbance of pristine graphene more than three times. This way, graphene attain critical functionalities to be used in solar energy and photovoltaic applications.Despite its high solar absorbance and surface coating abilities, pristine graphene as a semimetal is not promising for photovoltaic applications. In this study, we predict that Glycine (Gly), an amino acid, which is normally bound to pristine graphene by a weak van der Waals attraction, can form an organic coating durable to ambient condition when adsorbed on vacancy patterned graphene surface. Moreover, adsorbed Gly coating induces metal-insulator transition and concomitantly increases the solar absorbance of pristine graphene more than three times. This way, graphene attain critical functionalities to be used in solar energy and photovoltaic applications.Item Open Access Investigation of AlInN HEMT structures with different AlGaN buffer layers grown on sapphire substrates by MOCVD(ELSEVIER, 2012-06-01) Kelekci, O.; Tasli, P.; Cetin, S. S.; Kasap, M.; Ozcelik, S.; Özbay, EkmelWe investigate the structural and electrical properties of Al xIn 1-xN/AlN/GaN heterostructures with AlGaN buffers grown by MOCVD, which can be used as an alternative to AlInN HEMT structures with GaN buffer. The effects of the GaN channel thickness and the addition of a content graded AlGaN layer to the structural and electrical characteristics were studied through variable temperature Hall effect measurements, high resolution XRD, and AFM measurements. Enhancement in electron mobility was observed in two of the suggested Al xIn 1 -xN/AlN/GaN/Al 0.04Ga 0.96N heterostructures when compared to the standard Al xIn 1 -xN/AlN/GaN heterostructure. This improvement was attributed to better electron confinement in the channel due to electric field arising from piezoelectric polarization charge at the Al 0.04Ga 0.96N/GaN heterointerface and by the conduction band discontinuity formed at the same interface. If the growth conditions and design parameters of the Al xIn 1-xN HEMT structures with AlGaN buffers can be modified further, the electron spillover from the GaN channel can be significantly limited and even higher electron mobilities, which result in lower two-dimensional sheet resistances, would be possible.Item Open Access Optical properties and electronic band structure of topological insulators on A2 5B36 compound based(IEEE, 2012) Koc H.; Mamedov, Amirullah M.; Özbay, EkmelWe have performed a first principles study of structural, electronic, and optical properties of rhombohedral Sb 2Te 3 and Bi 2Te 3 compounds using the density functional theory within the local density approximation. The lattice parameters, bulk modulus, and its pressure derivatives of these compounds have been obtained. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constant are calculated and presented in the study © 2012 IEEE.Item Open Access Optical properties of the narrow-band ferroelectrics: first principle calculations(Taylor & Francis Inc., 2015) Koc, H.; Simsek S.; Mamedov, A. M.; Özbay, EkmelBased on density functional theory, we have studied the electronic, and optical properties of narrow-band ferroelectric compounds - (Ge,Sn) Te. Generalized gradient approximation has been used for modeling exchange-correlation effects. The lattice parameters of the considered compounds have been calculated. The calculated electronic band structure shows that GeTe and SnTe compounds have a direct forbidden band gap of 0.742 and 0.359. The real and imaginary parts of dielectric functions and therefore, the optical functions such as energy-loss function, as well as the effective number of valance electrons and the effective optical dielectric constant are all calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data. © 2015 Taylor & Francis Group, LLC.Item Open Access Quantum transport regimes in quartic dispersion materials with Anderson disorder(AIP Publishing LLC, 2024-04-28) Polat, Mustafa; Özkan, Hazan; Sevinçli, HâldunMexican-hat-shaped quartic dispersion manifests itself in certain families of single-layer two-dimensional hexagonal crystals such as compounds of groups III-VI and groups IV-V as well as elemental crystals of group V. A quartic band forms the valence band edge in various of these structures, and some of the experimentally confirmed structures are GaS, GaSe, InSe, SnSb, and blue phosphorene. Here, we numerically investigate strictly one-dimensional and quasi-one dimensional (Q1D) systems with quartic dispersion and systematically study the effects of Anderson disorder on their transport properties with the help of a minimal tight-binding model and Landauer formalism. We compare the analytical expression for the scaling function with simulation data to distinguish the domains of diffusion and localization regimes. In one dimension, it is shown that conductance drops dramatically at the quartic band edge compared to the quadratic case. As for the Q1D nanoribbons, a set of singularities emerge close to the band edge, suppressing conductance and leading to short mean-free-paths and localization lengths. Interestingly, wider nanoribbons can have shorter mean-free-paths because of denser singularities. However, the localization lengths sometimes follow different trends. Our results display the peculiar effects of quartic dispersion on transport in disordered systems.Item Open Access Strained band edge characteristics from hybrid density functional theory and empirical pseudopotentials: GaAs, GaSb, InAs and InSb(Institute of Physics Publishing Ltd., 2016) Çakan, A.; Sevik, C.; Bulutay, C.The properties of a semiconductor are drastically modified when the crystal point group symmetry is broken under an arbitrary strain. We investigate the family of semiconductors consisting of GaAs, GaSb, InAs and InSb, considering their electronic band structure and deformation potentials subject to various strains based on hybrid density functional theory. Guided by these first-principles results, we develop strain-compliant local pseudopotentials for use in the empirical pseudopotential method (EPM). We demonstrate that the newly proposed empirical pseudopotentials perform well close to band edges and under anisotropic crystal deformations. Using the EPM, we explore the heavy hole-light hole mixing characteristics under different stress directions, which may be useful in manipulating their transport properties and optical selection rules. The very low 5 Ry cutoff targeted in the generated pseudopotentials paves the way for large-scale EPM-based electronic structure computations involving these lattice mismatched constituents.Item Open Access Strained empirical pseudopotential generation from hybrid density functionals: GaAs, InAs,GaSb, InSb(2015-08) Çakan, AslıSelf-assembled quantum dots composed of III-V compounds receive considerable attention due to their potential applications on spintronics and quantum informa- tion processing. Here, lattice mismatch between two materials causes a remark- able strain and this subsequently affects not only carriers but also nuclear spins due to electric quadrupole interaction. In this thesis, the behavior of electronic band structure and deformation potentials under various strains are investigated in the family of semiconductors consisting of InAs, GaAs, InSb and GaSb. Com- putations are performed using semi-empirical pseudopotential method (EPM) by generating a new set of strain-compliant pseudopotentials. In order to both lead and validate EPM calculations, density functional theory based on hybrid functionals has been employed. Our results on hydrostatic and shear strain de- formation potentials obtained by either technique are in very good agreement with the experimental data. We demonstrate that the newly proposed empirical pseudopotentials perform well around band edges under anisotropic crystal de- formations. This paves the way for large-scale electronic structure computations involving lattice mismatched constituents.Item Open Access Structural, elastic, and electronic properties of topological insulators: Sb2Te3 and Bi2Te3(IEEE, 2013) Koc H.; Mamedov, Amirullah M.; Özbay, EkmelWe have performed a first principles study of structural, elastic, and electronic properties of rhombohedral Sb2Te3 and Bi 2Te3 compounds using the density functional theory within the local density approximation. The lattice parameters of considered compounds have been calculated. The second-order elastic constants have been calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities, and Debye temperature have also been estimated in the present work. The calculated electronic band structure shows that Sb2Te3 and Bi2Te 3 compounds have a direct forbidden band gap. Our structural estimation and some other results are in agreement with the available experimental and theoretical data. © 2013 IEEE.Item Open Access Topological Insulators: Electronic Band Structure and Spectroscopy(Institute of Physics Publishing, 2017) Palaz S.; Koc, H.; Mamedov, Aamirullah M.; Özbay, EkmelIn this study, we present the results of our ab initio calculation of the elastic constants, density of states, charge density, and Born effective charge tensors for ferroelectric (rhombohedral) and paraelectric phases (cubic) of the narrow band ferroelectrics (GeTe, SnTe) pseudopotentials. The related quantities such as bulk modulus and shear modulus using obtained elastic constants have also been estimated in the present work. The total and partial densities of states corresponding to the band structure of Sn(Ge)Te(S,Se) were calculated. We also calculated the Born effective charge tensor of an atom (for instance, Ge, Sn, Te, etc.), which is defined as the induced polarization of the solid along the main direction by a unit displacement in the perpendicular direction of the sublattice of an atom at the vanishing electric field. © Published under licence by IOP Publishing Ltd.