BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Electron and Heat transport"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Thermoelectric efficiency in model nanowires
    (2013) Badalov, Sabuhi
    Nowadays, the use of thermoelectric semiconductor devices are limited by their low efficiencies. Therefore, there is a huge amount of research effort to get high thermoelectric efficient materials with a fair production value. To this end, one important possibility for optimizing a material’s thermoelectric properties is reshaping their geometry. The main purpose of this thesis is to present a detailed analysis of thermoelectric efficiency of 2 lead systems with various geometries in terms of linear response theory, as well as 3 lead nanowire system in terms of the linear response and nonlinear response theories. The thermoelectric efficiency both in the linear response and nonlinear response regime of a model nanowire was calculated based on Landauer-B¨uttiker formalism. In this thesis, first of all, the electron transmission probability of the system at the hand, i.e. 2 lead or 3 lead systems are investigated by using R-matrix theory. Next, we make use of these electron transmission probability of model systems to find thermoelectric transport coefficients in 2 lead and 3 lead nanowires. Consequently, the effect of inelastic scattering is incorporated with a fictitious third lead in the 3 lead system. The efficiency at maximum power is especially useful to define the optimum working conditions of nanowire as a heat engine. Contrary to general expectation, increasing the strength of inelastic scattering is shown to be a means of making improved thermoelectric materials. A controlled coupling of the nanowire to a phonon reservoir for instance could be a way to increase the efficiency of nanowires for better heat engines.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback