Browsing by Subject "Electron"
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access Dynamic correlation effects on the plasmon dispersion in a two-dimensional electron gas(The American Physical Society, 2003) Yurtsever, A.; Moldoveanu, V.; Tanatar, BilalThe charge-density oscillations (plasmons) of a low-density two-dimensional uniform electron gas are studied within the framework of finite temperature and frequency dependent (dynamic) version of Singwi, Tosi, Land, and Sjölander theory and compared with the recent experimental results. The use of the Hartree-Fock approximation for the static structure factor leads to a finite temperature dynamical counterpart of the static Hubbard approximation. We observe important differences between dynamic and static local-field factors as well as between the corresponding plasmon dispersion laws. Our calculated plasmon energies that include dynamic correlations are in very-good agreement with the recent experimental results.Item Open Access Dynamic correlations in double-layer electron systems(The American Physical Society, 2001) Tanatar, Bilal; Davoudi, B.We study the effects of dynamic correlations on the ground-state properties of a double-layer two-dimensional electron gas within the quantum Singwi-Tosi-Land-Sjölander theory (STLS). The intralayer and interlayer static structure factors, the pair-correlation functions, and the wave vector and frequency-dependent local-field factors have been calculated for a range of electron densities and layer separations. We find that the local-field factors have an oscillatory frequency dependence and the magnitude of interlayer local-field factors is about an order of magnitude smaller than that of the intralayer. Our results are compared with the random-phase approximation and the static STLS approximation to assess the importance of dynamical correlations. We also calculate the dispersion relations for the optical and acoustic plasmons and the damping of these modes to compare them with other mean-field theories, and we comment on the relevance of our results to the recent experiments.Item Open Access Electron momentum and energy relaxation rates in GaN and AlN in the high-field transport regime(The American Physical Society, 2003) Bulutay, C.; Ridley, B. K.; Zakhleniuk, N. A.Momentum and energy relaxation characteristics of electrons in the conduction band of GaN and AlN are investigated using two different theoretical approaches corresponding to two high electric-field regimes, one up to 1-2 MV/ cm values for incoherent dynamics, and the other at even higher fields for coherent dynamics where semiballistic and ballistic processes become important. For the former, ensemble Monte Carlo technique is utilized to evaluate these rates as a function of electron energy up to an electric-field value of 1 MV/cm (2 MV/cm) for GaN (AlN). Momentum and energy relaxation rates within this incoherent transport regime in the presence of all standard scattering mechanisms are computed as well as the average drift velocity as a function of the applied field. Major scattering mechanisms are identified as polar optical phonon (POP) scattering and the optical deformation potential (ODP) scattering. Roughly, up to fields where the steady-state electron velocity attains its peak value, the POP mechanism dominates, whereas at higher fields ODP mechanism takes over. Next, aiming to characterize coherent dynamics, the total out-scattering rate from a quantum state (chosen along a high-symmetry direction) due to these two scattering mechanisms are then computed using a first-principles full-band approach. In the case of POP scattering, momentum relaxation rate differs from the total out-scattering rate from that state; close to the conduction-band minimum, momentum relaxation rate is significantly lower than the scattering rate because of forward-scattering character of the intravalley POP emission., However, close to the zone boundary the difference between these two rates diminishes due to isotropic nature of intervalley scatterings. Finally, a simple estimate for the velocity-field behavior in the coherent transport regime is attempted, displaying a negative differential mobility due to the negative band effective mass along the electric-field direction.Item Open Access Electronic excited states of the CP29 antenna complex of green plants: a model based on exciton calculations(Springer / Kluwer Academic Publishers, 2000) İşerı, E. İ.; Albayrak, D.; Gülen, D.We have suggested a model for the electronic excited states of the minor plant antenna, CP29, by incorporating a considerable part of the current information offered by structure determination, site-directed mutagenesis, and spectroscopy in the modeling. We have assumed that the electronic excited states of the complex have been decided by the chlorophyll-chlorophyll (Chl) and Chl-protein interactions and have modeled the Coulombic interaction between a pair of Chls in the point-dipole approximation and the Chl-protein interactions are treated as empirical fit parameters. We have suggested the Qy dipole moment orientations and the site energies for all the chlorophylls in the complex through a simultaneous simulation of the absorption and linear dichroism spectra. The assignments proposed have been discussed to yield a satisfactory reproduction of all prominent features of the absorption, linear and circular dichroism spectra as well as the key spectral and temporal characteristics of the energy transfer processes among the chlorophylls. The orientations and the spectral assignments obtained by relatively simple exciton calculations have been necessary to provide a good point of departure for more detailed treatments of structure-function relationship in CP29. Moreover, it has been discussed that the CP29 model suggested can guide the studies for a better understanding of the structure-function relationship in the major plant antenna, LHCII.Item Open Access Förster-type nonradiative energy transfer for assemblies of arrayed nanostructures: confinement dimension vs stacking dimension(American Chemical Society, 2014-02-11) Hernandez-Martinez, P. L.; Govorov, A. O.; Demir, Hilmi VolkanForster-type nonradiative energy transfer (NRET) provides us with the ability to transfer excitation energy between proximal nanostructures with high efficiency under certain conditions. Nevertheless, the well-known Forster theory was developed for the case of a single donor (e.g., a molecule, a dye) together with single acceptor. There is no complete understanding for the cases when the donors and the acceptors are assembled in nanostructure arrays, though there are special cases previously studied. Thus, a comprehensive theory that models Forster-type NRET for assembled nanostructure arrays is required. Here, we report a theoretical framework of generalized theory for the Forster-type NRET with mixed dimensionality in arrays. These include combinations of arrayed nanostructures made of nanoparticles (NPs) and nanowires (NWs) assemblies in one-dimension (1D), two-dimension (2D), and three-dimension (3D) completing the framework for the transfer rates in all possible combinations of different confinement geometries and assembly architectures, we obtain a unified picture of NRET in assembled nanostructures arrays. We find that the generic NRET distance dependence is modified by arraying the nanostructures. For an acceptor NP the rate distance dependence changes from gamma alpha d(-6) to gamma alpha d(-5) when they are arranged in a ID stack, and to gamma alpha d(-4) when in a 2D array, and to gamma alpha d(-3) when in a 3D array. Likewise, an acceptor NW changes its distance dependence from gamma alpha d(-5) to gamma alpha d(-4) when they are arranged in a 1D array and to gamma alpha d(-3) when in a 2D array. These finding shows that the numbers of dimensions across which nanostructures are stacked is equally critical as the confinement dimension of the nanostructure in determining the NRET kinetics.Item Open Access Ladder approximation in coupled quantum-well systems(American Physical Society, 2001) Yurtsever, A.; Tanatar, BilalWe study the contact values of the interlayer pair-correlation function in electron-electron and electron-hole double-layer systems. For this purpose the ladder approximation as generalized to multicomponent systems is used. The ladder approximation yields positive values for the interlayer gee(0) and geh(0) for all values of the density parameter rs and layer spacing d. This allows us to infer possible instabilities in the system more reliably compared to other approaches. We also investigate the effects of quantum-well width and screening on the interlayer pair-correlation functions.Item Open Access Many-body effects in a two-component, one-dimensional electron gas with repulsive, short-range interactions(Elsevier, 1998-03-09) Tanatar, BilalWe investigate the correlation effects in a two-component, one-dimensional electron gas interacting via repulsive δ function interactions. Electron correlations are treated within the approximation scheme of Singwi, Tosi, Land, and Sjölander (STLS) which yields analytical expressions for the local-field corrections. The static structure factors, pair distribution functions, collective excitation modes, and interaction energy in a two-component system are discussed. © 1998 Elsevier Science B.V.Item Open Access Protein folding, misfolding and aggregation: the importance of two-electron stabilizing interactions(Public Library of Science, 2017) Cieplak, A. S.Proteins associated with neurodegenerative diseases are highly pleiomorphic and may adopt an all-α-helical fold in one environment, assemble into all-β-sheet or collapse into a coil in another, and rapidly polymerize in yet another one via divergent aggregation pathways that yield broad diversity of aggregates’ morphology. A thorough understanding of this behaviour may be necessary to develop a treatment for Alzheimer’s and related disorders. Unfortunately, our present comprehension of folding and misfolding is limited for want of a physicochemical theory of protein secondary and tertiary structure. Here we demonstrate that electronic configuration and hyperconjugation of the peptide amide bonds ought to be taken into account to advance such a theory. To capture the effect of polarization of peptide linkages on conformational and H-bonding propensity of the polypeptide backbone, we introduce a function of shielding tensors of the Cα atoms. Carrying no information about side chain-side chain interactions, this function nonetheless identifies basic features of the secondary and tertiary structure, establishes sequence correlates of the metamorphic and pH-driven equilibria, relates binding affinities and folding rate constants to secondary structure preferences, and manifests common patterns of backbone density distribution in amyloidogenic regions of Alzheimer’s amyloid β and tau, Parkinson’s α-synuclein and prions. Based on those findings, a split-intein like mechanism of molecular recognition is proposed to underlie dimerization of Aβ, tau, αS and PrPC, and divergent pathways for subsequent association of dimers are outlined; a related mechanism is proposed to underlie formation of PrPSc fibrils. The model does account for: (i) structural features of paranuclei, off-pathway oligomers, non-fibrillar aggregates and fibrils; (ii) effects of incubation conditions, point mutations, isoform lengths, small-molecule assembly modulators and chirality of solid-liquid interface on the rate and morphology of aggregation; (iii) fibril-surface catalysis of secondary nucleation; and (iv) self-propagation of infectious strains of mammalian prions. © 2017 Andrzej Stanisław Cieplak. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Item Open Access Quadrupolar spectra of nuclear spins in strained InxGa1−xAs quantum dots(American Physical Society, 2012) Bulutay, C.Self-assembled quantum dots (QDs) are born out of lattice mismatched ingredients where strain plays an indispensable role. Through the electric quadrupolar coupling, strain affects the magnetic environment as seen by the nuclear spins. To guide prospective single-QD nuclear magnetic resonance (NMR), as well as dynamic nuclear spin polarization experiments, an atomistic insight to the strain and quadrupolar field distributions is presented. A number of implications of the structural and compositional profile of the QD have been identified. A high aspect ratio of the QD geometry enhances the quadrupolar interaction. The inclined interfaces introduce biaxiality and the tilting of the major quadrupolar principal axis away from the growth axis; the alloy mixing of gallium into the QD enhances both of these features while reducing the quadrupolar energy. Regarding the NMR spectra, both Faraday and Voigt geometries are investigated, unraveling in the first place the extend of inhomogeneous broadening and the appearance of the normally forbidden transitions. Moreover, it is shown that from the main extend of the NMR spectra the alloy mole fraction of a single QD can be inferred. By means of the element-resolved NMR intensities it is found that In nuclei has a factor of 5 dominance over those of As. In the presence of an external magnetic field, the borderlines between the quadrupolar and Zeeman regimes are extracted as 1.5 T for In and 1.1 T for As nuclei. At these values the nuclear spin depolarization rates of the respective nuclei get maximized due to the noncollinear secular hyperfine interaction with a resident electron in the QD.Item Open Access Spin magnetization of a strongly correlated electron gas confined in a two-dimensional finite lattice(American Physical Society, 2004) Niţǎ, M.; Dinu, V.; Aldea, A.; Tanatar, BilalThe influence of disorder and interaction effects on the ground state polarization of the two-dimensional correlated electron gas is studied by numerical investigations of the unrestricted Hartree-Fock approach. With the model of Anderson disorder a continuous increase of the spin magnetization until the fully polarized regime is obtained. The ferromagnetic ground state is found to be favorable when the electron number is lowered and the interaction and disorder parameters are suitably chosen.Item Open Access Spin-dependent analysis of two-dimensional electron liquids(The American Physical Society, 2002) Bulutay, C.; Tanatar, BilalTwo-dimensional electron liquid (2D EL) at full Fermi degeneracy is revisited, giving special attention to the spin-polarization effects. First, we extend the recently proposed classical-map hypernetted-chain (CHNC) technique to the 2D EL, while preserving the simplicity of the original proposal. An efficient implementation of CHNC is given utilizing Lado's quadrature expressions for the isotropic Fourier transforms. Our results indicate that the paramagnetic phase stays to be the ground state until the Wigner crystallization density, even though the energy separation with the ferromagnetic and other partially polarized states become minute. We analyze compressibility and spin stiffness variations with respect to density and spin polarization, the latter being overlooked until now. Spin-dependent static structure factor and pair-distribution functions are computed; agreement with the available quantum Monte Carlo data persists even in the strong-coupling regime of the 2D EL.Item Open Access Theoretical study of crossed and parallel carbon nanotube junctions and three-dimensional grid structures(American Physical Society, 2004) Dag, S.; Senger, R. T.; Çıracı, SalimThis work presents a first-principles study of parallel and crossed junctions of single-wall carbon nanotubes (SWNT). The crossed junctions are modeled by two-dimensional grids of zigzag SWNTs. The atomic and electronic structure, stability, and energetics of the junctions are studied for different magnitudes of contact forces pressing the tubes towards each other and hence inducing radial deformations. Under relatively weak contact forces the tubes are linked with intertube bonds which allow a significant conductance through the junction. These interlinking bonds survive even after the contact forces are released and whole structure is fully relaxed. Upon increasing contact force and radial deformation the tube surfaces are flattened but the interlinking bonds are broken to lead to a relatively wider intertube spacing. The intertube conductance through such a junction diminish because of finite potential barrier intervening between the tubes. The linkage of crossing tubes to form stable junctions is enhanced by a vacancy created at the contact. The three-dimensional grid structure formed by SWNTs is also investigated as a possible framework in device integration.