BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Electrochromic devices"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A complementary electrochromic device with highly improved performance based on brick-like hydrated tungsten trioxide film
    (American Scientific Publishers, 2012) Jiao, Z.; Wang, J.; Ke, L.; Sun, X. W.; Demir, Hilmi Volkan
    Uniform and well adhesive nanostructured hydrated tungsten trioxide (3WO 3•H 2O) films were grown on fluorine doped tin oxide (FTO) substrate via a facile and template-free crystal-seed-assisted hydrothermal method by addition of ammonium sulfate ((NH 4) 2SO 4) and hydrogen peroxide (H 2O 2). X-ray diffraction (XRD) studies indicated that the films are of orthorhombic structure. Scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM) analysis showed that the film was composed of brick-like nanostructures with a preferred growing direction along (002). The influence of seed layer, (NH 4) 2SO 4 and H 2O 2 on the products were also studied. The film showed good cyclic stability, comparable switching speed and coloration efficiency (30.1 cm 2 C -1). A complementary electrochromic device based on the film and Prussian blue depicted highly improved color contrast, coloration/bleaching response (1.8 and 3.7 s respectively) and coloration efficiency (164.6 cm 2 C -1).
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Graphene based optoelectronics in the visible spectrum
    (2015) Polat, Emre Ozan
    Graphene, a two dimensional crystal of carbon atoms, emerges as a viable material for optoelectronics because of its electrically-tunable broadband optical properties. Optical response of graphene at visible and near infrared frequencies is defined by inter-band electronic transitions. By electrical tuning of the Fermi energy, the inter-band transitions can be blocked due to Pauli blocking. However, controlling inter-band transitions of graphene in the visible and near infrared wavelengths, has been an outstanding challenge. We developed a new device to control optical properties of graphene in the visible spectra. Our device relies on a graphene supercapacitor which includes two parallel graphene electrodes and electrolyte between them. Mutual gating between graphene electrodes enables us to fabricate optical modulators which can operate in the visible and near-infrared. Single layer graphene, however, has performance limits due to its small optical absorption defined by fundamental constants. We extend our method and we developed a new class of electrochromic devices using multilayer graphene. Fabricated devices undergo a reversible color change with the electrically controlled intercalation process. The electrical and optical characterizations of the electrochromic devices reveal the broadband optical modulation up to 55 per cent in the visible and near-infrared. Integration of semiconducting materials on unconventional substrates enables optoelectronic devices with new mechanical functionalities that cannot be achieved with wafer-based technologies. As a novel application, we demonstrate ultra thin electronic paper displays using the multilayer graphene as a reconfigurable optical medium. We anticipate that the developed devices would find wide range of applications in optoelectronics.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback