Browsing by Subject "Electroacoustic transducers."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Airborne cmut cell design(2014) Yılmaz, AslıAll transducers used in airborne ultrasonic applications, including capacitive micromachined ultrasonic transducers (CMUTs), incorporate loss mechanisms to have reasonably wide frequency bandwidth. However, CMUTs can yield high efficiency in airborne applications and unlike other technologies, they offer wider bandwidth due to their low characteristic impedance, even for efficient designs. Despite these advantages, achieving the full potential is challenging due to the lack of a systematic method to design a wide bandwidth CMUTs. In this thesis, we present a method for airborne CMUT design. We use a lumped element circuit model and harmonic balance (HB) approach to optimize CMUTs for maximum transmitted power. Airborne CMUTs have narrowband characteristic at their mechanical part, due to low radiation impedance. In this work, we restrict the analysis to a single frequency and the transducer is driven by a sinusoidal voltage with half of the frequency of operation frequency, without any dc bias. We propose a new mode of airborne operation for CMUTs, where the plate motion spans the entire gap. We achieve this maximum swing at a specific frequency applying the lowest drive voltage and we call this mode of operation as Minimum Voltage Drive Mode (MVDM). We present equivalent circuit-based design fundamentals for airborne CMUT cells and verify the design targets by fabricated CMUTs. The performance limits for silicon membranes for airborne applications are derived. We experimentally obtain 78.9 dB//20Pa@1m source level at 73.7 kHz, with a CMUT cell of radius 2.05 mm driven by 71 V sinusoidal drive voltage at half the frequency. The measured quality factor is 120. CMUTs can achieve a large bandwidth (low quality factor level) as they can be manufactured to have thin plates. Low-quality-factor airborne CMUTs experience increased ambient pressure and therefore a larger membrane deflection. This effect increases the stiffness of the plate material and can be considered by nonlinear compliance in the circuit model. We study the interaction of the compliance nonlinearity and nonlinearity of transduction force and show that transduction overwhelms the compliance nonlinearity. To match the simulation results with the admittance measurements we implement a very accurate model-based characterization approach where we modify the equivalent circuit model. In the modified circuit model, we introduced new elements to include loss mechanisms. Also, we changed the dimension parameters used in the simulation to compensate the difference in the resonance frequency and amplitude.Item Open Access Barrel-stave flextensional transducer design(2009) Şahin, AykutThis thesis describes the design of low frequency, high power capability class-I flextensional, otherwise known as the barrel-stave, flextensional transducer. Piezoelectric ceramic rings are inserted inside the shell. Under an electric drive, ceramic rings vibrate in the thickness mode in the longitudinal axis. The longitudinal vibration of the rings is transmitted to the shell and converted into a flexural motion. Low amplitude displacements on its axis create high total displacement on the shell, acting as a mechanical transformer. Equivalent circuit analysis of transducer is performed in MATLAB and the effects of structural variables on the resonance frequency are investigated. Critical analysis of the transducer is performed using finite element modeling (FEM). Three dimensional transducer structure is modeled in ANSYS, and underwater acoustical performance is investigated. Acoustical analysis is performed by applying a voltage on piezoelectric material both in vacuum and in water for the convex shape barrel-stave transducer. Effects of transducer structural variables, such as transducer dimensions, shell thickness, shell curvature and shell material, on the electrical input impedance, electroacoustical transfer function, resonance frequency and quality factor are investigated. Thermal analysis of designed transducer is performed in finite element analysis. Measured results of the transducer are compared with the theoretical results.Item Open Access The design of a wideband and widebeam piston transducer in a finite closed circular baffle(2008) Şahin, ZekeriyyaThe design of a high power piezoelectric underwater transducer operating at frequency range 42 kHz-78 kHz with acoustic power capability in excess of 250W is described. The transducer consists of two back-to-back elements. Each element is formed by stacked PZT-4 ceramic rings, a matching and a steel backing layer, and placed in a finite rigid circular baffle. We investigate the dependence of bandwidth and beamwidth to the combination of piston and baffle radii, a and b, respectively. With ka of 2.45 (k is the wave number) at resonance and a b/a ratio of 2, the transducer resonates at 60kHz with 60% bandwidth and has a beamwidth of 60º at each half space. We show that when two transducers are placed at right angles spatially and driven in parallel, we can obtain an omnidirectional beam pattern in the lower frequency band. The beam pattern exhibits two dips in each quadrant at the higher end of the frequency band, which are within 8 dB. We also investigate power handling capability of the transducer from thermal point of view using finite element analysis. The input impedance measurements agree well with the numerical results within the pass band.