Browsing by Subject "Electric network analysis"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Analog CMOS implementation of cellular neural networks(IEEE, 1993) Baktır, I. A.; Tan, M. A.The analog CMOS circuit realization of cellular neural networks with transconductance elements is presented. This realization can be easily adapted to various types of applications in image processing just by choosing the appropriate transconductance parameters according to the predetermined coefficients. The effectiveness of the designed circuits for connected component detection is shown by HSPICE simulations. For “fixed function” cellular neural network circuits the number of transistors are reduced further by using multi-input transconductance elements.Item Open Access Efficient evaluation of spatial-domain MoM matrix entries in the analysis of planar stratified geometries(IEEE, 2000) Kinayman, N.; Aksun, M. IAn efficient hybrid method for evaluation of spatial-domain method-of-moments (MoM) matrix entries is presented in this paper. It has already been demonstrated that the introduction of the closed-form Green's functions into the MoM formulation results in a significant computational improvement in filling up MoM matrices and, consequently, in the analysis of planar geometries. To achieve further improvement in the computational efficiency of the MoM matrix entries, a hybrid method is proposed in this paper and, through some examples, it is demonstrated that it provides significant acceleration in filling up MoM matrices while preserving the accuracy of the results.Item Open Access Graphene field effect devices operating in differential circuit configuration(Elsevier, 2015) Nyffeler, C.; Hanay, M. S.; Sacchetto, D.; Leblebici, Y.We study the concept of a basic building block for circuits using differential signaling and being based on graphene field effect devices. We fabricated a number of top-gated graphene FETs using commercially available graphene and employing electron beam lithography along with other semiconductor manufacturing processes. These devices were then systematically measured in an automated setup and their DC characteristics analyzed in terms of a simple but effective analytical model. This model together with the collected data allowed us to proceed further with both mathematical analysis of circuit characteristics as well as numerical simulation in a dedicated circuit analysis software.Item Open Access Low power UWB transceiver design using dynamic voltage scaling(IEEE, 2007-03) Garg, R.; Chunjie, D.; Jinyun, Z.; Gezici, SinanLow power consumption is a critical issue in many UWB systems. In this paper, we investigate the application of dynamic voltage scaling (DVS) and other low power design techniques to a multiband-OFDM UWB transceiver baseband circuit design in order to reduce average power consumption of the chip. Our results show significant power savings over the conventional approach. © 2007 IEEE.Item Open Access A novel algorithm for DC analysis of piecewise-linear circuits: popcorn(IEEE, 1994) Topçu, S.; Ocalı, O.; Atalar, Abdullah; Tan, M. A.A fast and convergent iteration method for piecewise-linear analysis of nonlinear resistive circuits is presented. Most of the existing algorithms are applicable only to a limited class of circuits. In general, they are either not convergent or too slow for large circuits. The new algorithm presented in the paper is much more efficient than the existing ones and can be applied to any piecewise-linear circuit. It is based on the piecewise-linear version of the Newton-Raphson algorithm. As opposed to the Newton-Raphson method, the new algorithm is globally convergent from an arbitrary starting point. It is simple to understand and it can be easily programmed. Some numerical examples are given in order to demonstrate the effectiveness of the proposed algorithm in terms of the amount of computation. © 1994 IEEEItem Open Access Rate-controlled optical burst switching for both congestion avoidance and service differentiation(Elsevier, 2005) Boyraz, H.; Akar, N.Optical Burst Switching (OBS) has recently been proposed as a candidate architecture for the next generation optical Internet. Several challenging issues remain to be solved to pave the way for the OBS vision. Contention arises in OBS networks when two or more bursts are destined for the same wavelength, and a wide variety of reactive contention resolution mechanisms have been proposed in the literature. One challenging issue in OBS is proactively controlling the traffic flowing through the OBS network so that the network does not stay in a persistent state of contention, which we call the congestion avoidance problem. Another challenging issue is the need for service differentiation, which is common today in electronically switched networks via the use of advanced buffer management and scheduling mechanisms. However, such mechanisms cannot be used in OBS networks due to the limited use, or total absence, of buffering. One of the popular existing approaches to service differentiation in OBS networks is the use of larger offset times for high-priority bursts which, however, increases the delays and may adversely affect application-level performance. In this paper, we propose a feedback-based rate control protocol for the control plane of the OBS network to both address the congestion avoidance and service differentiation issues. Using this protocol, the incoming traffic is dynamically shaped at the edge of the OBS network in order to avoid potential congestion in the burst-switched core. Moreover, the traffic shaping policies for the low and high priority traffic classes are different, and it is possible using the proposed protocol to isolate high-priority and low-priority traffic almost perfectly over time scales on the order of a few round-trip times. Simulation results are reported to validate the congestion avoidance and service differentiation capabilities of the proposed architecture. © 2006 Elsevier B.V. All rights reserved.Item Open Access The substrate temperature dependent electrical properties of titanium dioxide thin films(2010) Yildiz, A.; Lisesivdin, S.B.; Kasap, M.; Mardare, D.Titanium dioxide thin films were obtained by a dc sputtering technique onto heated glass substrates. The relationship between the substrate temperature and the electrical properties of the films was investigated. Electrical resistivity measurements showed that three types of conduction channels contribute to conduction mechanism in the temperature range of 13-320 K. The temperature dependence of electrical resistivity between 150 and 320 K indicated that electrical conductioninthe films was controlled by potential barriers caused by depletion of carriers at grain boundaries. The conduction mechanism of the films was shifted from grain boundary scattering dominated band conduction to the nearest neighbor hopping conduction at temperatures between 55 and 150 K. Below 55 K, the temperature dependence of electrical resistivity shows variable range hopping conduction. The correlation between the substrate temperature and resistivity behaviorisdiscussed by analyzing the physical plausibility of the hopping parameters and material properties derived by applying different conduction models. With these analyses, various electrical parameters of the present samples such as barrier height, donor concentration, density of states at the Fermi level, acceptor concentration and compensation ratio were determined. Their values as a function of substrate temperature were compared. © Springer Science+Business Media, LLC 2009.Item Open Access Theoretical limits on time delay estimation for ultra-wideband cognitive radios(IEEE, 2008-09) Gezici, Sinan; Celebi, H.; Arslan, H.; Poor, H. V.In this paper, theoretical limits on time delay estimation are studied for ultra-wideband (UWB) cognitive radio systems. For a generic UWB spectrum with dispersed bands, the Cramer-Rao lower bound (CRLB) is derived for unknown channel coefficients and carrier-frequency offsets (CFOs). Then, the effects of unknown channel coefficients and CFOs are investigated for linearly and non-linearly modulated training signals by obtaining specific CRLB expressions. It is shown that for linear modulations with a constant envelope, the effects of the unknown parameters can be mitigated. Finally, numerical results, which support the theoretical analysis, are presented. © 2008 IEEE.