Browsing by Subject "Elastic interface"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access On effective behavior of microstructures embedding general interfaces with damage(Springer, 2019-05) Saeb, S.; Steinmann, P.; Javili, AliThe interface between constituents of a multiphase material exhibits properties different from those of the bulk and can lead to major alternation of the material response. Interface effects are particularly important for multiphase nano-materials where the area-to-volume ratio is significantly large. In this contribution, we study the influence of a degrading general interface. That is, we allow for the initiation and accumulation of damage on a generalized interface accounting for both jumps of the displacement and the traction across the interface. The applicability of the proposed framework is demonstrated through several numerical examples. We present a parametric study on the influence of a broad range of interface material parameters on the overall behavior of various microstructures subject to volumetric loading and unloading. The numerical results illustrate that the resistance along the interface plays a key role in the resulting damage mechanism and could potentially prevent the detachment of the inclusion from the matrix regardless of the resistance across the interface or bulk material parameters. This behavior is observed and shown for both two- and three-dimensional examples. Moreover, the size-effect due to the general interface model is examined and compared against other interface models. Finally, the influence of the boundary conditions on the effective response and damage initiation of several microstructures is studied.Item Open Access Understanding the role of general interfaces in the overall behavior of composites and size effects(Elsevier, 2019) Firooz, Soheil; Javili, AliThe objective of this contribution is to investigate the role of generalized interfaces in the overall response ofparticulate composites and the associated size effects. Throughout this work, the effective properties of com-posites are obtained via three-dimensional computational simulations using the interface-enhancedfinite ele-ment method for a broad range of parameters. The term interface corresponds to a zero-thickness model re-presenting the interphase region between the constituents and accounting for the interfaces at the micro-scaleintroduces a physical length-scale to the effective behavior of composites, unlike the classicalfirst-orderhomogenization that is missing a length-scale. The interface model here is general in the sense that both tractionand displacement jumps across the interface are admissible recovering both the cohesive and elastic interfacemodels. Via a comprehensive computational study, we identify extraordinary and uncommon characteristics ofparticle reinforced composites endowed with interfaces. Notably, we introduce the notion ofcritical sizeat whichthe overall behavior, somewhat surprisingly, shows no sensitivity with respect to the inclusion-to-matrix stiffnessratio. Our study, provides significant insight towards computational design of composites accounting for in-terfaces and in particular, nano-composites.