Browsing by Subject "Dumbbell"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Functionalization of group V monolayers and their compounds: alloying, doping and surface modification(2020-11) Kanlı, MuammerThere has been growing interest during the last decade in two-dimensional (2D) materials due to their important roles in various scientific and technological applications such as detectors, lasers and light emitting diodes. In this thesis we present a theoretical investigation of a couple of such 2D materials from group V monolayers and their compounds. Firstly, ordered alloys of GaxAl1−xN hexagonal monolayer are studied and the effect of Al content on mechanical, electronic, thermal and optical properties are investigated. The optimized lattice constants and band gaps change in accordance to Vegard’s Law. Low barrier energies and favorable substitution of Ga by Al may show feasibility of fabrication. Segregation is also checked with mixing energy calculations. The dynamical stability of alloys is shown by phonon spectrum analysis and MD simulations. GaxAl1−xN alloys give lower in-plane stiffness than h-BN or graphene, but higher Poisson’s ratio than most realized 2D systems. Heat capacity of alloys delivers a decrease with Al content at low temperatures but it converges to the classical limit at high temperatures. The absorption onset of GaxAl1−xN alloys remain in the near UV range and prominent absorption peaks blue-shifts with increasing x in compliance with the variation of the band gap. The considered systems, in regard to their stability and tunable fundamental properties seem to be very promising 2D semiconductors for wide range of applications at reduced scales. Then, the interaction of alkali metal atoms (Li, Na, and K) with single layer and periodic structures of hb-As and sw-As phases are revealed by first-principles methods. Arsenene phases are considered to be used as electrodes (anode) for ion-batteries. Strong alkali-electrode binding and low diffusion energy barriers gives out better cycling stability and faster diffusion, respectively. hb-As shows better storage capacity than sw-As. However, deviations from ordered pattern and decline of formation energy with increasing doping level point out a possible structural transformation. By MD calculations, crystalline to amorphous phase transition is seen even for low concentrations level at ambient temperature. The average open-circuit voltages of 0.68-0.88 V (0.65-0.98 V) with specific capacity up to 715 mAhg−1 (358 mAhg−1) are calculated for single layer (periodic) configurations. Overall, non-crystalline phases are calculated to offer more favorable structures than crystalline configurations and they provide more coherent results when compared with experimental data. The obtained voltage profile together with low diffusion barriers and strong metal-electrode binding suggests arsenene as a promising anode material to be used in for alkali-ion battery applications. Lastly, the formation of dumbbell (DB) geometry upon adsorption of Ga, N adatoms to GaN monolayer is investigated. While Ga-N DBs are unstable, Ga-Ga and N-N DB geometries are predicted to form in an exothermic and spontaneous scheme. Cohesive energy of hexagonal GaN monolayer decreases when a DB is formed on its surface. Electronic structures for Ga-Ga DBs for 2×2, 3×3, 4×4 and 5×5 phases show spinpolarized and degenerate bands mainly contributed by p-orbitals of the atoms in impurity zone. Degenarated bands are not observed for N-N dumbbell for HDP, TDP, 2×2 and 3×3 phases. Upon DB formation, semiconductor GaN monolayer become spin-polarized semiconductor with varying band gap, where this functionalization allows electronic structure to be tuned substantionally. This would be highly desired for nanoscale electronic and optical devices. These Ga-Ga and N-N DB geometries may also be used for the synthesis of layered GaN structures.Item Open Access Mutual coupling reduction in microstrip antennas using defected ground structures(2012) Yayan, S. MelikşahMutual coupling between microstrip antenna elements (through space and surface waves) has a significant role in the performance merits of the microstrip antenna arrays. In many applications, low mutual coupling levels are desired such as bistatic radar systems where isolation is essential in order not to have any interference between the transmitter and receiver antennas. Furthermore, presence of mutual coupling among the antenna elements can affect the sidelobe levels, beam position and frequency bandwidth of arrays. Mutual coupling among the array elements usually occurs as a result of surface waves and space waves. Mutual coupling through the space waves are very strong if the array elements are very close to each other. However, they die out quickly as the separation between the array elements become larger. On the other hand, although the mutual coupling due to the surface waves are weaker than that of space waves when the array elements are close to each other, they remain as the only coupling mechanism when they are far away from each other, in particular for arrays of microstrip antennas. In this thesis, the main goal is to reduce the mutual coupling between the microstrip antennas resulting from the surface waves by using a defected ground structure (DGS). The DGS is formed by etching either a dumbbell shape or a slotted complementary split ring resonator (SCSRR) to the part of the ground plane that remains between the microstrip antennas along their E-plane direction. It has been observed that although a considerable reduction in the mutual coupling can be achieved, the radiation patterns of the antennas are deteriorated due to a significant increase in the backlobe radiation. Hence, a reflector and a cavity combination is used to decrease the backlobe radiation to a certain level. Finally, to test the DGS in an array environment, the performance merits of a 2×2 microstrip antenna array is investigated in the presence of a dumbbell DGS, where each microstrip is backed with a cavity and a reflector. Based on both the simulations and the measurements, it has been concluded that despite the achieved mutual coupling reduction between the microstrip antennas in the array environment, the far-zone radiation patterns related merits have not been improved.