Browsing by Subject "Droplet-based microfluidics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Droplet-based microfluidic systems for silica coating and synthesis of conjugated polymer nanoparticles(2015-07) Özkan, AlicanNanoparticles have unique electronic, optic and magnetic properties due to their large area to volume ratio. In order for them to preserve their properties for longer times, some of them need to be coated with a protective layer such as silica (silicon dioxide) layer. This coating has to be made uniformly to obtain monodisperse size distributions, which is essential to obtain uniform properties for all nanoparticles. Obtaining monodisperse size distribution relies on the control over reaction conditions such as residence time, concentration and temperature. This thesis presents a microuidic reactor that can achieve strict control over reaction conditions by utilizing a meandering geometry of microchannels and droplet-based ow. Meandering channels reduce the time needed for mixing due to the reduced diffusion lengths; whereas droplet-based flow provides uniform residence time inside the reactor due to the circulating flow profile of droplets as opposed to parabolic ow profile in straight channels. Before fabricating the device, the mixing performance of droplets at different channel cross-sections and meandering geometries were simulated by using Comsol Multiphysicsr. As a result, it is concluded that the channel cross-section and meandering dimensions should be as small as possible for faster mixing. Based on these simulation results, the microuidic device was designed and later fabricated in polydimethyl siloxane (PDMS) by using the soft lithography technique. This system was used to understand the effect of solvent concentrations and residence time on silica formation in order to be able to control the coating thickness compared to batchwise methods. Initially silica nanoparticle formation inside droplets were tested; and 102 nm ± 4 nm diameter of silica nanoparticles were obtained; which is a significant improvement compared to the bath-wise synthesis methods. Additionally, experimental studies on the synthesis of green Conjugated Polymer Nanoparticles (CPN) was also conducted. By using three different methods, bulk solution, continuous ow and droplet-based ow, nanoparticles were synthesized. From the results, it was acquired that droplet-based ow provided higher quality of nanoparticles in terms of nanoparticle size, uniformity and monodispersity.Item Open Access Numerical analysis of mixing performance in sinusoidal microchannels based on particle motion in droplets(Springer Verlag, 2015) Özkan, A.; Erdem, E. Y.This numerical study was conducted to analyze and understand the parameters that affect the mixing performance of droplet-based flow in sinusoidal microfluidic channels. Finite element analysis was used for modeling fluid flow and droplet formation inside the microchannels via tracking interface between the two heterogeneous fluids along with multiple particle trajectories inside a droplet. The solutions of multiphase fluid flow and particle trajectories were coupled with each other so that drag on every single particle changed in every time step. To solve fluid motion in multiphase flow, level set method was used. Parametric study was repeated for different channel dimensions and different sinusoidal channel profiles. These results were compared with mixing in droplets inside a straight microchannel. Additionally, tracking of multiple particles inside a droplet was performed to simulate the circulating flow profile inside the droplets. Based on the calculation of the dispersion length, particle trajectories, and velocities inside droplets, it is concluded that having smaller channel geometries increases the mixing performance inside the droplet. This also shows that droplet-based fluid flow in microchannels is very suitable for performing chemical reactions inside droplets as it will occur faster. Moreover, narrower and sinusoidal microchannels showed better dispersion length difference compared to straight and wider microchannels.