BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Drop formation"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Controlled optical transition rates in nanodroplets
    (IEEE, 2000) Özçelik, Serdar
    The time-resolved fluorescence measurements of 3,3′-diethyl-5,5′-dichloro-9-phenylthiacarbocyanine (DDPT) in bulk solvents and methanol-in-oil reverse micellar systems is presented which include nano-sized methanol droplets stabilized with anionic surfactant aerosol-OT (AOT) in n-heptane, at room temperature. Relative fluorescence intensities of DDPT increase with a factor of 16 in m/o reverse micelles in comparison to those in bulk methanol. The radiative and nonradiative rate constants decreases in methanol dispersions, indicating that internal motions of DDPT in the droplets is reduced due to strong electrostatic interactions between the positively charged DDPT and the negatively charged sulfonate head-groups of AOT.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Numerical analysis of mixing performance in sinusoidal microchannels based on particle motion in droplets
    (Springer Verlag, 2015) Özkan, A.; Erdem, E. Y.
    This numerical study was conducted to analyze and understand the parameters that affect the mixing performance of droplet-based flow in sinusoidal microfluidic channels. Finite element analysis was used for modeling fluid flow and droplet formation inside the microchannels via tracking interface between the two heterogeneous fluids along with multiple particle trajectories inside a droplet. The solutions of multiphase fluid flow and particle trajectories were coupled with each other so that drag on every single particle changed in every time step. To solve fluid motion in multiphase flow, level set method was used. Parametric study was repeated for different channel dimensions and different sinusoidal channel profiles. These results were compared with mixing in droplets inside a straight microchannel. Additionally, tracking of multiple particles inside a droplet was performed to simulate the circulating flow profile inside the droplets. Based on the calculation of the dispersion length, particle trajectories, and velocities inside droplets, it is concluded that having smaller channel geometries increases the mixing performance inside the droplet. This also shows that droplet-based fluid flow in microchannels is very suitable for performing chemical reactions inside droplets as it will occur faster. Moreover, narrower and sinusoidal microchannels showed better dispersion length difference compared to straight and wider microchannels.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback