Browsing by Subject "Doxorubicin"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Development of an aprotinin-based novel nano-bioconjugate utilizing microfluidics via 3D cancer spheroid models(2024-08) Nazir, FaiqaProteins are promising substances for introducing new drug carriers with efficient blood circulation due to low possibilities of clearance by macrophages. However, such natural biopolymers have highly sophisticated molecular structures, preventing them from being assembled into nano-platforms with manipulable payload release profiles. Here, we announce a novel anti-cancer nano-drug carrier moonlighting protein, Aprotinin, to be used as a newly identified carrier for cytotoxic drugs. The Aprotinin-Dox orubicin (Apr-Dox) nano-bioconjugate was prepared via a single-step microfluidics co-flow mixing technique; a feasible and simple way to synthesize a carrier-based drug design with a double-barreled approach that can release and actuate two therapeutic agents simultaneously i.e., Apr-Dox in 1:11 ratio (aprotinin an anti-metastatic carrier drug and chemotherapeutic drug DOX). With a significant stimuli-sensitive (i.e. pH) drug release ability, this nanobioconjugate achieves superior bio-performances including high cellular uptake, efficient tumor penetration and accumulation into acidic tumor microenvironment, as well as inhibiting further tumor growth by halting the urokinase plasminogen activator (uPA) involved in metastasis and tumor progression. Distinctly, in healthy human umbilical vein endothelial (HUVEC) cells, drastically lower cellular uptake of nano-bioconjugate has been observed and validated compared to anticancer agent Dox. Our findings demonstrate an enhanced cellular internalization of nano-bioconjugates towards breast cancer, prostate cancer, and lung cancer both in vitro and in physiologically relevant biological 3D-spheroid models. Consequently, the designed nano-bioconjugate shows a high potential for targeted drug delivery via natural and biocompatible moonlighting protein, thus opening a new avenue for proving aprotinin in cancer therapy both as an anti-metastatic and drug-carrying agent.Item Open Access Doxorubicin induces prolonged DNA damage signal in cells overexpressing DEK isoform-2(Public Library of Science, 2022-10-03) Özçelik, Emrah; Kalaycı, Ahmet; Çelik, Büşra; Avcı, Açelya; Akyol, Hasan; Kılıç, İrfan Baki; Güzel, Türkan; Çetin, Metin; Öztürk, Merve Tuzlakoğlu; Çalışkaner, Zihni Onur; Tombaz, Melike; Yoleri, Dilan; Konu, Özlen; Kandilci, AytenDEK has a short isoform (DEK isoform-2; DEK2) that lacks amino acid residues between 49–82. The full-length DEK (DEK isoform-1; DEK1) is ubiquitously expressed and plays a role in different cellular processes but whether DEK2 is involved in these processes remains elusive. We stably overexpressed DEK2 in human bone marrow stromal cell line HS-27A, in which endogenous DEKs were intact or suppressed via short hairpin RNA (sh-RNA). We have found that contrary to ectopic DEK1, DEK2 locates in the nucleus and nucleolus, causes persistent үH2AX signal upon doxorubicin treatment, and couldn’t functionally compensate for the loss of DEK1. In addition, DEK2 overexpressing cells were more sensitive to doxorubicin than DEK1-cells. Expressions of DEK1 and DEK2 in cell lines and primary tumors exhibit tissue specificity. DEK1 is upregulated in cancers of the colon, liver, and lung compared to normal tissues while both DEK1 and DEK2 are downregulated in subsets of kidney, prostate, and thyroid carcinomas. Interestingly, only DEK2 was downregulated in a subset of breast tumors suggesting that DEK2 can be modulated differently than DEK1 in specific cancers. In summary, our findings show distinct expression patterns and subcellular location and suggest non-overlapping functions between the two DEK isoforms. © 2022 Ozçelik et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Item Open Access Examination of fabrication conditions of acrylate-based hydrogel formulations for doxorubicin release and efficacy test for hepatocellular carcinoma cell(Taylor and Francis., 2014) Bayramoglu, G.; Gozen, Damla; Ersoy, G.; Ozalp, V. C.; Akcali, K. C.; Arica, M. Y.The objective of the present study was to develop 2-hydroxypropyl methacrylate-co-polyethylene methacrylate [p(HPMA-co-PEG-MEMA)] hydrogels that are able to efficiently entrap doxorubicin for the application of loco-regional control of the cancer disease. Systemic chemotherapy provides low clinical benefit while localized chemotherapy might provide a therapeutic advantage. In this study, effects of hydrogel properties such as PEG chains length, cross-linking density, biocompatibility, drug loading efficiency, and drug release kinetics were evaluated in vitro for targeted and controlled drug delivery. In addition, the characterization of the hydrogel formulations was conducted with swelling experiments, permeability tests, Fourier transform infrared, SEM, and contact angle studies. In these drug-hydrogel systems, doxorubicin contains amine group that can be expected a strong Lewis acid-base interaction between drug and polar groups of PEG chains, thus the drug was released in a timely fashion with an electrostatic interaction mechanism. It was observed that doxorubicin release from the hydrogel formulations decreased when the density of cross-linking, and drug/polymer ratio were increased while an increase in the PEG chains length of the macro-monomer (i.e. PEG-MEMA) in the hydrogel system was associated with an increase in water content and doxorubicin release. The biocompatibility of the hydrogel formulations has been investigated using two measures: cytotoxicity test (using lactate dehydrogenase assay) and major serum proteins adsorption studies. Antitumor activity of the released doxorubicin was assessed using a human SNU398 human hepatocellular carcinoma cell line. It was observed that doxorubicin released from all of our hydrogel formulations which remained biologically active and had the capability to kill the tested cancer cells.Item Open Access Functional analysis of Erbin gene in breast cancer drug resistance(2021-02) Sunar, GizemErbin is an ERBB2 interacting protein with roles in many signaling pathways. Breast cancer is one of the types of cancer that is affected by Erbin regulation. However, it is unclear how Erbin regulates the biological behavior and drug resistance of breast cancer cells. Some studies have claimed that Erbin promotes tumorigenesis and demonstrates oncogenic features in breast cancer, whereas others have indicated that it inhibits breast cancer development. The main aim of this study was to explore the role of the Erbin gene in breast cancer drug resistance. Bioinformatic analyses of breast cancer patient datasets have shown that a high level of Erbin expression predicts better survival in breast cancer patients treated with chemotherapy or targeted therapies while the Erbin level does not change the survival rates of untreated breast cancer patients. These analyses lead us to hypothesize that the Erbin expression level could alter the effect of the drug treatment and a reduced level of Erbin expression could promote resistance against doxorubicin and tamoxifen. In vitro studies have demonstrated that the protein expressions were apparently lower in MDA-MB-231 doxorubicin resistant (DoxR) and MCF-7 tamoxifen resistant (TamR) cells compared to non-resistant cell line counterparts. When the expression level of Erbin was downregulated by si-RNA transfection, it was observed that the protein level of the anti-apoptotic markers increased whereas apoptotic markers decreased in MDA-MB-231 cells. Proteins that promote cell survival and proliferation increased in Erbin downregulated MDA-MB-231 and MCF-7 cells. Besides, when Erbin was reduced, the viability of the MDA-MB-231 cells against doxorubicin increased but there was no significant change for tamoxifen in MCF-7 cells. Lastly, breast cancer patients with high Erbin expression that were treated with tamoxifen, chemotherapy or trastuzumab have higher levels of DNA damage, apoptosis and cell cycle arrest-related genes. On the contrary, patients with low Erbin expression have higher levels of cyclins, CDKs and anti-apoptotic genes. In conclusion, Erbin could play an important role in the drug resistance of breast cancer cells since the reduction in Erbin expression can promote drug resistance in these cells.Item Open Access The impact of At1r inhibition via losartan on the anti-leukaemic effects of doxorubicin in acute myeloid leukaemia(Sage Publications, 2019-05) Ghasemi, M.; Okay, M.; Türk, S.; Naeemaee, Ronak; Güver, Ebru; Malkan, Ü. Y.; Aksu, S.; Sayınalp, N.; Haznedaroğlu, I. C.Introduction: Bone marrow renin–angiotensin system(RAS) modulates acute myeloid leukaemia(AML).The aim of this study is to clarify the relationships between RAS and AML, and to show the effect of losartan and doxorubicin treatment in AML cell lines. Methods: AML cell lines including CESS, HL-60, MO-1, P31/FUJ, GDM-1 and KASUMI-3 were used as models in this study. Results:After treating the six AML cell lines with a combination of losartan and doxorubicin, they were divided into two groups based on their behaviour: one became more sensitive to drug treatment (Group A) and the other had no change observed in behaviour after drug treatment (Group B). In silico analyses showed that Group A is involved in cellular apoptosis, while Group B is involved in tumour angiogenesis further supporting the in vitro results. Conclusion:The combined treatment of the AML cell lines with losartan and doxorubicin resulted in an increase in sensitivity of some of the cell lines. Those leukaemic cells are modulated via the induction of apoptosis, whereas the other cells resistant to the drug treatment are closely related to tumour angiogenesis indicating that RAS-AT1R seems to be differently expressed in different leukaemic blast cells and tumour microenvironments. Pharmaco-biological actions of RAS inhibitors may be different in distinct leukaemic cells based on the pathological behaviour of AML genomic subtypes.Item Open Access Local delivery of doxorubicin through supramolecular peptide amphiphile nanofiber gels(Royal Society of Chemistry, 2017) Cinar, G.; Ozdemir, A.; Hamsici, S.; Gunay, G.; Dana, A.; Tekinay, A. B.; Güler, Mustafa O.Peptide amphiphiles (PAs) self-assemble into supramolecular nanofiber gels that provide a suitable environment for encapsulation of both hydrophobic and hydrophilic molecules. The PA gels have significant advantages for controlled delivery applications due to their high capacity to retain water, biocompatibility, and biodegradability. In this study, we demonstrate injectable supramolecular PA nanofiber gels for drug delivery applications. Doxorubicin (Dox), as a widely used chemotherapeutic drug for breast cancer treatment, was encapsulated within the PA gels prepared at different concentrations. Physical and chemical properties of the gels were characterized, and slow release of the Dox molecules through the supramolecular PA nanofiber gels was studied. In addition, the diffusion constants of the drug molecules within the PA nanofiber gels were estimated using fluorescence recovery after the photobleaching (FRAP) method. The PA nanofiber gels did not show any cytotoxicity and the encapsulation strategy enhanced the activity of drug molecules on cellular viability through prolonged release compared to direct administration under in vitro conditions. Moreover, the local in vivo injection of the Dox encapsulated PA nanofiber gels (Dox/PA) to the tumor site demonstrated the lowest tumor growth rate compared to the direct Dox injection and increased the apoptotic cells within the tumor tissue for local drug release through the PA nanofiber gels under in vivo conditions.Item Open Access Multiomics approaches to overcome drug resistance in cancer(2021-09) Küçükkaraduman, BarışChemotherapy resistance remains one of the major challenges in cancer treatment. Most of the studies on drug resistance have focused on genetic evolution of cancer cells; however, this focus has shifted to non-genetic and epigenetic mechanisms. There is accumulating evidence that mechanisms of drug resistance are not mutually exclusive but instead coexist within a given cancer to develop resistance and therapy failure. Hence, overcoming resistance requires the comprehension of these complex biological processes. Here, we aimed to characterize drug resistance mechanisms by performing both single omics interrogations and multi-omics integrative analysis. For this purpose, we conducted Gene Set Enrichment Analysis (GSEA), functional enrichment analysis on protein-protein interaction (PPI) networks and miRNA-target networks for interpreting gene and miRNA expression data. To gain further biological insights on resistance mechanisms, we focused on identifying a multi-omics molecular signature that discriminates cancer cells based on their drug response profiles. Collectively, these in silico analyses suggested the epithelial-to mesenchymal transition (EMT) as a mediator of 5-FU/irinotecan resistance in colon cancer and irinotecan/gemcitabine resistance in pancreatic cancer. Drug sensitive cancer cells exhibited a more epithelial phenotype with increased cell proliferation. Multi-omics integration analysis revealed some EMT-related genes such as TGM2 and FOSL1, to contribute differential drug response in cancer cells. On the other hand, response of breast cancer cells to doxorubicin exhibited an opposite profile in which mesenchymal phenotype is sensitive while resistant cells have epithelial phenotype. Secondly, we aimed to induce mesenchymal-to-epithelial transition to overcome EMT-mediated drug resistance. We selected eight natural compounds and two re-purposed agents that have been shown to reverse EMT in various studies. We noted transcriptional changes suggesting a shift towards a more epithelial phenotype in 4 out of the 6 cell lines upon treatment with at least one compound tested. None of the natural compounds or re-purposed agents triggered MET in all cancer cells screened. In addition, compounds with clear or slight MET induction did cause these effects in a specific cell line or only in specific cancer type. We investigated next whether the treatment with natural compounds would result in chemosensitization. MET induction by natural compounds is not uniformly related to increased sensitivity to chemotherapeutics but can result in occasional synergistic or additive effects. Lastly, based on cytotoxic activity of a novel c-Src inhibitor 10a in 15 melanoma cells, we report the identification of a new gene signature that can predict chemosensitivity to 10a. Two distinct phenotypes of cells, defined as sensitive and resistant, were further analyzed to reveal an underlying mechanism for this differential response to 10a. We found that proliferative or mesenchymal features of the cells are associated with distinct sensitivity of 10a. Through a protein−chemical interaction network analysis, we identified that three histone deacetylase inhibitors, valproic acid, entinostat, and trichostatin A, were predicted to synergize with 10a. The synergizing effect of valproic acid was validated in vitro. We also aimed to define a minimal number of genes that could be used as biomarkers of 10a sensitivity. We show that the expression level of four genes can be used to predict drug sensitivity against 10a.Item Open Access Prediction of prognosis and chemosensitivity in breast cancer(2020-09) Akbar, Muhammad WaqasBreast cancer (BC) is responsible for the highest mortality and morbidity out of all the cancers in women which is primarily due to both inter and intra-tumoral molecular heterogeneity. This heterogeneity arises from stemness, epithelial to mesenchymal transition and the type of treatment given to patients. These three biological processes are highly related with each other. Traditional therapy when given to breast cancer patients generally results in the transition of epithelial cells to mesenchymal phenotype. Because treatment targets primarily non-stem cells, it can leave stem cells alive which can later result in a relapse of cancer. In this study we aimed to identify such markers that could classify breast cancer patients into stem/mesenchymal or non-stem/epithelial like phenotypes, to determine how generalized the above stated hypotheses are. We developed a gene list of 15 genes we term as CSC/non-CSC gene list (CNCL) which classifies tumors into stemness and/or EMT based phenotypes and can also classify tumor cells based on their relative sensitivity to treatment with traditional therapeutics such as paclitaxel and doxorubicin. When classified into stem/mesenchymal (CS/M) and non-stem/epithelial (NS/E) phenotypes, we showed that Lapatinib and Midostaurin have a specific growth inhibitory effects on NS/E cells, and CS/M cells, respectively. Surprisingly the CNCL showed prognostic significance only for patients who were treated with paclitaxel in neoadjuvant setting, while it could not prognosticate most other BC cohorts. We argue that this is due to the dynamic plasticity of these tumors, as studied within the third aim of this thesis. Secondly, we aimed to identify chemotherapy biomarkers for paclitaxel, cisplatin and doxorubicin to stratify patients in groups that will or will not benefit from these drugs. Using biomarkers, we selected for this purpose, we performed linear regression analysis using breast cancer cell lines to generate cytotoxicity prediction models which can predict IC50 values for these drugs, based on the expression of two genes in each model. Two models were selected for doxorubicin and cisplatin, and three models were selected for paclitaxel. All models were validated both in silico and in vitro. Thirdly, we aimed to evaluate breast cancer plasticity that occurs upon treatment or when a tumor metastasizes. We noted that some breast tumors not only switch their clinical subtype but also change their molecular subtype upon treatment or metastasis. As breast cancer patient treatment in the routine practice is routed based on breast cancer subtype, it is very important to identify the subtype switches which can be critical for changes in treatment decisions. Additionally, we also identified metastatic biomarkers using large number of cohorts. Lastly, as CNCL genes did not show any prognostic importance in terms of both overall survival and metastasis free survival, we checked if the same is true for melanoma. We used Melanin A (MLANA) and Inhibin (INHBA) genes as the markers for invasive/proliferative, stem/non-stem and mesenchymal/epithelial phenotypes. High INHBA expression, which is epithelial, proliferative and non-stem phenotype biomarker, was associated with poor survival and high MLANA expression, which is mesenchymal, invasive and stem phenotype marker, was associated with good prognosis in melanoma patients. Therefore, these findings in melanoma supported our results in breast cancer.