BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Distributed network"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Team-optimal online estimation of dynamic parameters over distributed tree networks
    (Elsevier, 2019) Kılıç, O. F.; Ergen, Tolga; Sayın, M.; Kozat, Süleyman
    We study online parameter estimation over a distributed network, where the nodes in the network collaboratively estimate a dynamically evolving parameter using noisy observations. The nodes in the network are equipped with processing and communication capabilities and can share their observations or local estimates with their neighbors. The conventional distributed estimation algorithms cannot perform the team-optimal online estimation in the finite horizon global mean-square error sense (MSE). To this end, we present a team-optimal distributed estimation algorithm through the disclosure of local estimates for tracking an underlying dynamic parameter. We first show that the optimal estimation can be achieved through the diffusion of all the time stamped observations for any arbitrary network and prove that the team optimality through disclosure of local estimates is only possible for certain network topologies such as tree networks. We then derive an iterative algorithm to recursively calculate the combination weights of the disclosed information and construct the team-optimal estimate for each time step. Through series of simulations, we demonstrate the superior performance of the proposed algorithm with respect to the state-of-the-art diffusion distributed estimation algorithms regarding the convergence rate and the finite horizon MSE levels. We also show that while conventional distributed estimation schemes cannot track highly dynamic parameters, through optimal weight and estimate construction, the proposed algorithm presents a stable MSE performance.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize