Browsing by Subject "Distributed Computing Systems"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Application of map/reduce paradigm in supercomputing systems(2013) Demirci, Gündüz VehbiMap/Reduce is a framework first introduced by Google in order to rapidly develop big data analytic applications on distributed computing systems. Even though the Map/Reduce paradigm had a game changing impact on certain fields of computer science such as information retrieval and data mining, it did not have such an impact on the scientific computing domain yet. The current implementations of Map/Reduce are especially designed for commodity PC clusters, where failures of compute nodes are common and inter-processor communication is slow. However, scientific computing applications are usually executed on high performance computing (HPC) systems and such systems provide high communication bandwidth with low message latency where failures of processors are rare. Therefore, Map/Reduce framework causes performance degradation and becomes less preferable in scientific computing domain. Due to these reasons, specific implementations of Map/Reduce paradigm are needed for scientific computing domain. Among the existing implementations, we focus our attention on the MapReduce-MPI (MR-MPI) library developed at Sandia National Labs. In this thesis, we argue that by utilizing MR-MPI Library, the Map/Reduce programming paradigm can be successfully utilized for scientific computing applications that require scalability and performance. We tested MR-MPI Library in HPC systems with several fundamental algorithms that are frequently used in scientific computing and data mining domains. Implemented algorithms include all-pair-similarity-search (APSS), all-pair-shortest-path (APSP), and page-rank (PR). Tests were performed on well-known large-scale HPC systems IBM BlueGene/Q (Juqueen) and Cray XE6 (Hermit) to examine scalability and speedup of these algorithms.