Browsing by Subject "Distributed Bragg reflectors (DBR)"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Super-radiant surface emission from a quasi-cavity hot electron light emitter(Springer New York LLC, 1999) O'Brien, A.; Balkan, N.; Boland-Thoms, A.; Adams, M.; Bek, A.; Serpengüzel, A.; Aydınlı, A.; Roberts, J.The Hot Electron Light Emitting and Lasing in Semiconductor Heterostructure (HELLISH-1) device is a novel surface emitter which utilises hot carrier transport parallel to the layers of a Ga1 - xAlxAs p-n junction incorporating a single GaAs quantum well on the n-side of the junction plane. Non-equilibrium electrons are injected into the quantum well via tunnelling from the n-layer. In order to preserve the charge neutrality in the depletion region, the junction undergoes a self-induced internal biasing. As a result the built-in potential on the p-side is reduced and hence the injection of non-equilibrium holes into the quantum well in the active region is enhanced. The work presented here shows that a distributed Bragg reflector grown below the active region of the HELLISH device increases the emitted light intensity by two orders of magnitude and reduces the emission line-width by about a factor of 3 in comparison with the original HELLISH-1 structure. Therefore, the device can be operated as an ultrabright emitter with higher spectral purity.