Browsing by Subject "Distance dependency"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Near-field energy transfer into silicon inversely proportional to distance using quasi-2D colloidal quantum well donors(Wiley-VCH Verlag GmbH & Co. KGaA, 2021-09-12) Humayun, Muhammad Hamza; Hernandez-Martinez, Pedro Ludwig; Gheshlaghi, Negar; Erdem, Onur; Altıntaş, Yemliha; Shabani, Farzan; Demir, Hilmi VolkanSilicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2O3) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d−1 with 25% efficiency at a donor–acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.Item Open Access Near-unity efficiency energy transfer from colloidal semiconductor quantum wells of CdSe/cdS nanoplatelets to a monolayer of MoS2(American Chemical Society, 2018) Taghipour, N.; Martinez, P. L. H.; Ozden, A.; Olutas M.; Dede, D.; Gungor K.; Erdem, O.; Perkgoz, N. K.; Demir, Hilmi VolkanA hybrid structure of the quasi-2D colloidal semiconductor quantum wells assembled with a single layer of 2D transition metal dichalcogenides offers the possibility of highly strong dipole-to-dipole coupling, which may enable extraordinary levels of efficiency in Förster resonance energy transfer (FRET). Here, we show ultrahigh-efficiency FRET from the ensemble thin films of CdSe/CdS nanoplatelets (NPLs) to a MoS2 monolayer. From time-resolved fluorescence spectroscopy, we observed the suppression of the photoluminescence of the NPLs corresponding to the total rate of energy transfer from ∼0.4 to 268 ns-1. Using an Al2O3 separating layer between CdSe/CdS and MoS2 with thickness tuned from 5 to 1 nm, we found that FRET takes place 7- to 88-fold faster than the Auger recombination in CdSe-based NPLs. Our measurements reveal that the FRET rate scales down with d-2 for the donor of CdSe/CdS NPLs and the acceptor of the MoS2 monolayer, d being the center-to-center distance between this FRET pair. A full electromagnetic model explains the behavior of this d-2 system. This scaling arises from the delocalization of the dipole fields in the ensemble thin film of the NPLs and full distribution of the electric field across the layer of MoS2. This d-2 dependency results in an extraordinarily long Förster radius of ∼33 nm.