Browsing by Subject "Disk layout"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Disk-based management of interaction graphs(Institute of Electrical and Electronics Engineers, 2014-11) Gedik, B.; Bordawekar, R.In our increasingly connected and instrumented world, live data recording the interactions between people, systems, and the environment is available in various domains, such as telecommunciations and social media. This data often takes the form of a temporally evolving graph, where entities are the vertices and the interactions between them are the edges. An important feature of this graph is that the number of edges it has grows continuously, as new interactions take place. We call such graphs interaction graphs. In this paper we study the problem of storing interaction graphs such that temporal queries on them can be answered efficiently. Since interaction graphs are append-only and edges are added continuously, traditional graph layout and storage algorithms that are batch based cannot be applied directly. We present the design and implementation of a system that caches recent interactions in memory, while quickly placing the expired interactions to disk blocks such that those edges that are likely to be accessed together are placed together. We develop live block formation algorithms that are fast, yet can take advantage of temporal and spatial locality among the edges to optimize the storage layout with the goal of improving query performance. We evaluate the system on synthetic as well as real-world interaction graphs, and show that our block formation algorithms are effective for answering temporal neighborhood queries on the graph. Such queries form a foundation for building more complex online and offline temporal analytics on interaction graphs.Item Open Access Scalable layout of large graphs on disk(2015) Yaşar, AbdurrahmanWe are witnessing an enormous growth in social networks as well as in the volume of data generated by them. As a consequence, processing this massive amount of data has become a major problem. An important portion of this data is in the form of graphs. In recent years, several graph processing and management systems emerged to handle large-scale graphs. The primary goal of these systems is to run graph algorithms in an efficient and scalable manner. Unlike relational data, graphs are semi-structured in nature. Thus, storing and accessing graph data using secondary storage requires new solutions that can provide locality of access for graph processing workloads. In this work, we propose a novel scalable disk layout technique for graphs, which aims at reducing the I/O cost of diskbased graph processing algorithms. To achieve this goal, we designed a scalable Map/Reduce-style method called ICBP, which can divide the graph into a series of disk blocks that contain sub-graphs with high locality. Furthermore, ICBP can order the resulting blocks on the disk to further reduce non-local accesses. We experimentally evaluated ICBP to showcase its scalability, layout quality, as well as the effectiveness of automatic parameter tuning for ICBP. We also deployed the graph layouts generated by ICBP to the Neo4j [1] graph database management system. Our experimental results show that the default layout results in 1.5 to 2.5 times higher running times compared to ICBP.