Browsing by Subject "Disease model"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Angiogenic peptide nanofibers repair cardiac tissue defect after myocardial infarction(Acta Materialia Inc, 2017) Rufaihah, A. J.; Yasa, I. C.; Ramanujam, V. S.; Arularasu, S. C.; Kofidis, T.; Güler, Mustafa O.; Tekinay, A. B.Myocardial infarction remains one of the top leading causes of death in the world and the damage sustained in the heart eventually develops into heart failure. Limited conventional treatment options due to the inability of the myocardium to regenerate after injury and shortage of organ donors require the development of alternative therapies to repair the damaged myocardium. Current efforts in repairing damage after myocardial infarction concentrates on using biologically derived molecules such as growth factors or stem cells, which carry risks of serious side effects including the formation of teratomas. Here, we demonstrate that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization in cardiovascular tissue after myocardial infarction, without the addition of any biologically derived factors or stem cells. When the GAG mimetic nanofiber gels were injected in the infarct site of rodent myocardial infarct model, increased VEGF-A expression and recruitment of vascular cells was observed. This was accompanied with significant degree of neovascularization and better cardiac performance when compared to the control saline group. The results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair. Statement of Significance We present a synthetic bioactive peptide nanofiber system can enhance cardiac function and enhance cardiovascular regeneration after myocardial infarction (MI) without the addition of growth factors, stem cells or other biologically derived molecules. Current state of the art in cardiac repair after MI utilize at least one of the above mentioned biologically derived molecules, thus our approach is ground-breaking for cardiovascular therapy after MI. In this work, we showed that synthetic glycosaminoglycan (GAG) mimetic peptide nanofiber scaffolds induce neovascularization and cardiomyocyte differentiation for the regeneration of cardiovascular tissue after myocardial infarction in a rat infarct model. When the peptide nanofiber gels were injected in infarct site at rodent myocardial infarct model, recruitment of vascular cells was observed, neovascularization was significantly induced and cardiac performance was improved. These results demonstrate the potential of future clinical applications of these bioactive peptide nanofibers as a promising strategy for cardiovascular repair.Item Open Access Jnk1 deficiency in hematopoietic cells suppresses macrophage apoptosis and increases atherosclerosis in low-density lipoprotein receptor null mice(Lippincott Williams and Wilkins, 2016) Babaev, V. R.; Yeung, M.; Erbay, E.; Ding, L.; Zhang, Y.; May, J. M.; Fazio, S.; Hotamisligil, G. S.; Linton, M. F.Objective - The c-Jun NH 2 -terminal kinases (JNK) are regulated by a wide variety of cellular stresses and have been implicated in apoptotic signaling. Macrophages express 2 JNK isoforms, JNK1 and JNK2, which may have different effects on cell survival and atherosclerosis. Approach and Results - To dissect the effect of macrophage JNK1 and JNK2 on early atherosclerosis, Ldlr-/- mice were reconstituted with wild-type, Jnk1-/-, and Jnk2-/- hematopoietic cells and fed a high cholesterol diet. Jnk1-/- →Ldlr-/- mice have larger atherosclerotic lesions with more macrophages and fewer apoptotic cells than mice transplanted with wild-type or Jnk2-/- cells. Moreover, genetic ablation of JNK to a single allele (Jnk1+/- /Jnk2-/- or Jnk1-/- /Jnk2+/-) in marrow of Ldlr-/- recipients further increased atherosclerosis compared with Jnk1-/- →Ldlr-/- and wild-type→Ldlr-/- mice. In mouse macrophages, anisomycin-mediated JNK signaling antagonized Akt activity, and loss of Jnk1 gene obliterated this effect. Similarly, pharmacological inhibition of JNK1, but not JNK2, markedly reduced the antagonizing effect of JNK on Akt activity. Prolonged JNK signaling in the setting of endoplasmic reticulum stress gradually extinguished Akt and Bad activity in wild-type cells with markedly less effects in Jnk1-/- macrophages, which were also more resistant to apoptosis. Consequently, anisomycin increased and JNK1 inhibitors suppressed endoplasmic reticulum stress-mediated apoptosis in macrophages. We also found that genetic and pharmacological inhibition of phosphatase and tensin homolog abolished the JNK-mediated effects on Akt activity, indicating that phosphatase and tensin homolog mediates crosstalk between these pathways. Conclusions - Loss of Jnk1, but not Jnk2, in macrophages protects them from apoptosis, increasing cell survival, and this accelerates early atherosclerosis.Item Open Access The prosurvival IKK-related kinase IKKϵ integrates LPS and IL17A signaling cascades to promote Wnt-dependent tumor development in the intestine(American Association for Cancer Research, 2016-05) Göktuna, S. I.; Shostak, K.; Chau, T.-L.; Heukamp, L.C.; Hennuy, B.; Duong, H.-Q.; Ladang, A.; Close, P.; Klevernic, I.; Olivier, F.; Florin, A.; Ehx, G.; Baron, F.; Vandereyken, M.; Rahmouni, S.; Vereecke, L.; Loo, G. V.; Büttner, R.; Greten, F. R.; Chariot, A.Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikkϵ in Wnt-driven tumor development. We found that Ikkϵ was activated in intestinal tumors forming upon loss of the tumor suppressor Apc. Genetic ablation of Ikkϵ in b-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkϵ to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikkϵ was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding proinflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikkϵ-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikkϵ phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikkϵ to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation.