Browsing by Subject "Dirac point"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Hall conductance in graphene with point defects(2013) İslamoǧlu, S.; Oktel, M. Ö.; Gülseren, O.We investigate the Hall conductance of graphene with point defects within the Kubo formalism, which allows us to calculate the Hall conductance without constraining the Fermi energy to lie in a gap. For pure graphene, which we model using a tight-binding Hamiltonian, we recover both the usual and the anomalous integer quantum Hall effects depending on the proximity to the Dirac points. We investigate the effect of point defects on Hall conduction by considering a dilute but regular array of point defects incorporated into the graphene lattice. We extend our calculations to include next nearest neighbor hopping, which breaks the bipartite symmetry of the lattice. We find that impurity atoms which are weakly coupled to the rest of the lattice result in gradual disappearance of the high conductance value plateaus. For such impurities, especially for vacancies which are decoupled from the lattice, strong modification of the Hall conductance occurs near the E = 0 eV line, as impurity states are highly localized. In contrast, if the impurities are strongly coupled, they create additional Hall conductance plateaus at the extremum values of the spectrum, signifying separate impurity bands. Hall conductance values within the original spectrum are not strongly modified.Item Open Access Hybrid J-Aggregate–graphene phototransistor(American Chemical Society, 2020) Balcı, Osman; Uzlu, Burkay; Yakar, Ozan; Polat, Nahit; Ari, O.; Tunç, İlknur; Kocabaş, Coşkun; Balcı, SinanJ-aggregates are fantastic self-assembled chromophores with a very narrow and extremely sharp absorbance band in the visible and near-infrared spectrum, and hence they have found many exciting applications in nonlinear optics, sensing, optical devices, photography, and lasing. In silver halide photography, for example, they have enormously improved the spectral sensitivity of photographic process due to their fast and coherent energy migration ability. On the other hand, graphene, consisting of single layer of carbon atoms forming a hexagonal lattice, has a very low absorption coefficient. Inspired by the fact that J-aggregates have carried the role to sense the incident light in silver halide photography, we would like to use Jaggregates to increase spectral sensitivity of graphene in the visible spectrum. Nevertheless, it has been an outstanding challenge to place isolated J-aggregate films on graphene to extensively study interaction between them. We herein noncovalently fabricate isolated J-aggregate thin films on graphene by using a thin film fabrication technique we termed here membrane casting (MC). MC significantly simplifies thin film formation of water-soluble substances on any surface via porous polymer membrane. Therefore, we reversibly modulate the Dirac point of graphene in the J-aggregate/graphene van der Waals (vdW) heterostructure and demonstrate an all-carbon phototransistor gated by visible light. Owing to the hole transfer from excited excitonic thin film to graphene layer, graphene is hole-doped. In addition, spectral and power responses of the all-carbon phototransistor have been measured by using a tunable laser in the visible spectrum. The first integration of J-aggregates with graphene in a transistor structure enables one to reversibly write and erase charge doping in graphene with visible light that paves the way for using J-aggregate/graphene vdW heterostructures in optoelectronic applications.