Browsing by Subject "Dimers"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Adsorption site of alkali metal overlayers on Si(001) 2 × 1(1992) Batra, I. P.; Çıracı, SalimThe alkali metal semiconductor interfaces are currently being investigated by a variety of tools. Most studies to date at half a monolayer coverage have shown preference for either a quasi-hexagonal (H) site or a long-bridge (B) site. At this coverage one-dimensional chain structure for K on Si(001) 2 × 1 have now been confirmed by scanning tunneling microscopy (STM). The data, however, is consistent with either of the two sites. STM investigations at low coverages suggested that alkali metals like K and Cs occupy a novel site, Y, which is a bridge site between two Si atoms belonging to different dimers along the dimer row [110] direction. The total energy calculations for this new Y site, discovered by STM, have shown that it is indeed a site of (local) energy minimum. The ability of the surface silicon atoms, which are not adjacent to the alkali metal atom, to buckle makes the Y site a competitive adsorption site. We deduce the nature of bonding between alkali metals and Si using the STM data. It is concluded that the bond is substantially ionic in nature. © 1992.Item Open Access Density functional theory investigation of substituent effects on building blocks of conducting polymers(Elsevier, 1999) Salzner, U.Substituted heterocyclic dimers were calculated employing density functional theory (DFT) and analyzed with the natural bond orbits method (NBO). Substitution in 3- and 4-positions leads to parallel shifting of HOMO and LUMO but does not reduce energy gaps. For bridge dimers, HOMO-LUMO gaps correlate with π-electron densities in the carbon backbone and energy gap reduction correlate with the strength of π-π* interactions from the backbone to the bridging group. Alternating donor-acceptor groups do not reduce energy gaps and lead to systems with average HOMO and LUMO levels compared to the parent molecules.Item Open Access Finite temperature studies of Te adsorption on Si(0 0 1)(Elsevier, 2002) Sen, P.; Çıracı, Salim; Batra, I. P.; Grein, C. H.; Sivananthan, S.We perform first principles density functional calculations to investigate the adsorption of Te on the Si(0 0 1) surface from low coverage up to a monolayer coverage. At low coverage, a Te atom is adsorbed on top of the Si surface dimer bond. At higher coverages, Te atoms adsorption causes the Si-Si dimer bond to break, lifting the (2 × 1) reconstruction. We find no evidence of the Te-Te dimer bond formation as a possible source of the (2 × 1) reconstruction at a monolayer coverage. Finite temperature ab initio molecular dynamics calculations show that Te covered Si(0 0 1) surfaces do not have any definitive reconstruction. Vibrations of the bridged Te atoms in the strongly anharmonic potentials prevent the reconstruction structure from attaining any permanent, two-dimensional periodic geometry. This explains why experiments attempting to find a definite model for the reconstruction reached conflicting conclusions. © 2002 Elsevier Science B.V. All rights reserved.Item Open Access Initial stages of SiGe epitaxy on Si(001) studied by scanning tunneling microscopy(Elsevier BV, 1995) Oral, A.; Ellialtioglu, R.We have studied the initial stages of strained SiGe alloy growth on the Si(001)-(2 × 1) surface by scanning tunneling microscopy. The Si0.36Ge0.64 alloy was grown on the silicon substrate at various coverages (0.13-3.6 ML) and at different temperatures (∼ 310-470°C). The growth was one dimensional, preferring the direction perpendicular to the underlying silicon dimer rows at low coverages and low temperatures. Anti-phase boundaries were observed to lead multi-layer growth. Strong interaction between the overlayer and the substrate was found to buckle the substrate as well as SiGe dimers. Different growth mechanisms, island formation and step flow, were identified at low and high substrate temperatures. (2 × n) ordering of the strained overlayer was only observed at an intermediate growth temperature (∼ 390°C). © 1995.Item Open Access Quantum Zeno Suppression of Intramolecular Forces(American Physical Society, 2017) Wüster, S.We show that Born-Oppenheimer surfaces can intrinsically decohere, implying loss of coherence among constituent electronic basis states. We consider the example of interatomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultracold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete cessation of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.Item Open Access Spectroelectrochemistry of potassium ethylxanthate, bis(ethylxanthato)nickel(II) and tetraethylammonium tris(ethylxanthato)-nickelate(II)(Royal Society of Chemistry, 2001) Dag, Ö.; Yaman, S. Ö.; Önal, A. M.; Isci, H.Electrochemical and chemical oxidation of S2COEt−, Ni(S2COEt)2, and [Ni(S2COEt)3]− have been studied by CVand in situ UV-VIS spectroscopy in acetonitrile. Cyclic voltammograms of S2COEt− and Ni(S2COEt)2 display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to an Ag/Ag+ (0.10 M) electrode. However, the cyclic voltammogram of [Ni(S2COEt)3]− displays one reversible (−0.15 V) and two irreversible (0.35, 0.80 V) oxidation peaks, referenced to an Ag/Ag+ electrode. The low temperature EPR spectrum of the oxidatively electrolyzed solution of (NEt4)[Ni(S2COEt)3] indicates the presence of [NiIII(S2COEt)3], which disproportionates to Ni(S2COEt)2, and the dimer of the oxidized ethylxanthate ligand, (S2COEt)2 ((S2COEt)2 = C2H5OC(S)SS(S)COC2H5), with a second order rate law. The final products of constant potential electrolysis at the first oxidation peak potentials of S2COEt−, Ni(S2COEt)2, and [Ni(S2COEt)3]− are (S2COEt)2; Ni2+(sol) and (S2COEt)2; and Ni(S2COEt)2 and (S2COEt)2, respectively. The chemical oxidation of S2COEt− to (S2COEt)2, and [Ni(S2COEt)3]− to (S2COEt)2 and Ni(S2COEt)2 were also achieved with iodine. The oxidized ligand in the dimer form can be reduced to S2COEt− with CN− in solution.Item Open Access SU(2)-path integral investigation of Holstein dimer(Elsevier Science Publishers B.V., Amsterdam, Netherlands, 2000) Hakioğlu, A. T.; Ivanov, V. A.; Zhuravlev, M. Ye.The SU(2) coherent state path integral is used to investigate the partition function of the Holstein dimer. This approach naturally takes into account the symmetry of the model. The ground-state energy and the number of the phonons are calculated as functions of the parameters of the Hamiltonian. The renormalizations of the phonon frequency and electron orbital energies are considered. The destruction of quasiclassical mean-field solution is discussed.