BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Differential scanning calorimetry"

Filter results by typing the first few letters
Now showing 1 - 5 of 5
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Conducting polymer composites of polythiophene with natural and synthetic rubbers
    (Elsevier, 1996) Yigit, S.; Hacaloglu, J.; Akbulut, U.; Toppare, L.
    Electrochemical synthesis of conducting polymer composites of polythiophene was achieved. Synthetic and natural rubbers were used as the insulating polymer matrices. FT-IR, differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and mass spectrometry (MS) were utilized to characterize the composite blends. The conductivity measurements were done by using a standard four-probe technique. The above-mentioned methods show that the resultant composites have different properties compared to polythiophene due to interaction of the rubbers with electrochemical polymerization of thiophene, whereas the same argument is not valid for the polypyrrole synthesis via the same procedure.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying
    (Elsevier Ltd, 2014) Alijani F.; Amini, R.; Ghaffari, M.; Alizadeh, M.; Okyay, Ali Kemal
    In the present paper, the effect of milling process on the chemical composition, structure, microhardness, and thermal behavior of Ti-41Ni-9Cu compounds developed by mechanical alloying was evaluated. The structural characteristic of the alloyed powders was evaluated by X-ray diffraction (XRD). The chemical composition homogeneity and the powder morphology and size were studied by scanning electron microscopy coupled with electron dispersive X-ray spectroscopy. Moreover, the Vickers micro-indentation hardness of the powders milled for different milling times was determined. Finally, the thermal behavior of the as-milled powders was studied by differential scanning calorimetery. According to the results, at the initial stages of milling (typically 0-12. h), the structure consisted of a Ni solid solution and amorphous phase, and by the milling evolution, nanocrystalline martensite (B19') and austenite (B2) phases were initially formed from the initial materials and then from the amorphous phase. It was found that by the milling development, the composition uniformity is increased, the inter-layer thickness is reduced, and the powders microhardness is initially increased, then reduced, and afterward re-increased. It was also realized that the thermal behavior of the alloyed powders and the structure of heat treated samples is considerably affected by the milling time.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electrochemically obtained insulating and conducting polymers and composites of acrylonitrile
    (1998) Yilmaz, B.Y.; Akbulut, U.; Toppare L.
    Electrochemically obtained polyacrylonitrile and a commercial polyacrylonitrile were heat treated to improve their conductivities. The parameters chosen for heat treatment conditions were the temperature, treatment medium (vacuum or air) and, doping agent. The conductivity of all heat treated polymers was measured. The characterization of the heat treated polymers was made by IR analysis. The composite films of polyacrylonitrile with polypyyrole and polythiophene were electrochemically prepared at different compositions. The change in the conductivity of composites was analyzed as a function of the percent composition of the insulating component. IR, DSC, TGA and SEM analyses were used to characterize the polymer composites.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Interlocking shish-kebab morphology in polybutene-1
    (John Wiley & Sons, Inc., 2002) Kalay, G.; Kalay, C. R.
    The aim of this research was to explore the effect of shear-controlled orientation injection molding (SCORIM) on polybutene-1 (PB-1). This article describes the methods and processing conditions used for injection molding and discusses the properties of the moldings. Both conventional and SCORIM have been used for the production of moldings. SCORIM is based on the application of specific macroscopic shears to a solidifying melt that facilitates enhanced molecular alignment. The effect of the process was investigated by performing mechanical tests, X-ray studies, differential scanning calorimetric studies, polarized light microscopy, and atomic force microscopy (AFM). Moldings exhibited an improved mechanical performance as compared with conventional moldings. Young's modulus was increased over twofold, and the impact energy was enhanced by 60%. The improvement in mechanical performance was combined with an increase in crystallinity and enhanced molecular orientation. The application of SCORIM also favored the formation of the stable Form I' in PB-1. The formation of interlocking shish-kebab morphology following the application of SCORIM was observed in the AFM studies. Relationships between the mechanical properties of PB-1 and the micromorphologies formed during processing are demonstrated.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Sterilization of PMMA microfluidic chips by various techniques and investigation of material characteristics
    (Elsevier, 2016) Yavuz, C.; Oliaei, S. N. B.; Cetin, B.; Yesil-Celiktas, O.
    The sterilization of microfluidic chips is a vital step of the fabrication process prior to the customer use in biomedical applications. The aim of this study was to analyze the influence of different sterilization techniques and to compare the characteristics of the material before and after sterilization of polymethylmethacrylate (PMMA) microchips. For this, supercritical carbon dioxide (SC-CO2) along with standard sterilization methods such as ultraviolet (UV), heat (autoclaving), ethylene oxide (EtO) and hydrogen peroxide (H2O2) were applied. The treated microchips were analyzed by Scanning Electron Microscopy, Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy and Laser Scanning Microscopy in order to ascertain any changes in the chemical structure and surface morphology. The optimum sterilization parameters for SC-CO2 were elicited as 120 bar, 40°C and 60 min which provided complete sterility and did not alter the main properties of the polymer along with EtO and H2O2 sterilizations unlike heat and UV treatments. However, surface roughness and microchannel profiles were negatively affected. Although complete sterility was achieved, each protocol has its own strengths and weaknesses. © 2015 Elsevier B.V. All rights reserved.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback