Browsing by Subject "Different solvents"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Analysis of Fe nanoparticles using XPS measurements under d.c. or pulsed-voltage bias(2010) Süzer, Şefik; Baer, D. R.; Engelhard, M. H.The impact of solution exposure on the charging properties of oxide coatings on Fe metal-core oxide-shell nanoparticles has been examined by sample biasing during XPS measurements. The Fe nanoparticles were suspended in relatively unreactive acetone and analyzed after particles containing solutions were deposited on SiO2/Si or Au substrates. The particle and substrate combinations were subjected to ±10V d.c. or ±5V a.c., biasing in the form of square wave (SQW) pulses. The samples experienced variable degrees of charging for which low-energy electrons at ∼1eV, 20 μA and low-energy Ar+ ions were used to minimize it. Application of d.c. bias and/or SQW pulses significantly influences the extent of charging, which is utilized to gather additional analytical information about the sample under investigation. This approach allows separation of otherwise overlapping peaks. Accordingly, the O1s peaks of the silicon oxide substrate, the iron oxide nanoparticles, and that of the casting solvent can be separated from each other. Similarly, the C1s peak belonging to the solvent can be separated from that of the adventitious carbon. The charging shifts of the iron nanoparticles are strongly influenced by the solvent to which the particles were exposed. Hence, acetone exhibited the largest shift, water the smallest, and methanol in between. Dynamical measurements performed by application of the voltage stress in the form of SQW pulses provides information about the time constants of the processes involved, which leads us to postulate that these charging properties we probe in these systems stem mainly from ionic movement(s).Item Open Access Flexible organic-inorganic core-shell nanofibers by electrospinning and atomic layer deposition(CRC Press, 2012) Kayacı, Fatma; Çağla, Özgit-Akgün; Dönmez, İnci; Bıyıklı, Necmi; Uyar, TamerOrganic-inorganic core-shell nanofibers were fabricated by combining electrospinning and atomic layer deposition (ALD). In the first step, nylon66 (polymeric organic core) nanofibers having different average fiber diameters (∼100 nm, ∼250 nm and ∼650 nm) were electrospun by using different solvent systems and polymer concentrations. In the second step, uniform and conformal layer of zinc oxide (ZnO) (inorganic shell) with precise thickness (∼90 nm) and composition on the round surface of the nylon nanofibers were deposited by ALD. The core-shell nylon66-ZnO nanofibers have shown unique properties such as structural flexibility due to the polymeric core and photocatalytic activity due to the ZnO shell layer.