Browsing by Subject "Dielectric waveguides"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Broadband one way propagation via dielectric waveguides with unequal effective index(IEEE, 2014) Öner, B. B.; Üstün, K.; Kurt, H.; Okyay, Ali Kemal; Turhan-Sayan, G.We present an efficient approach for broad band one way propagation of light by parallel and unequal dielectric waveguides leading different effective phase shifts. Three dimensional numerical simulations show that 30% operating bandwidth is achieved.Item Open Access Efficient computation of surface fields excited on a dielectric-coated circular cylinder(IEEE, 2000-10) Erturk, V. B.; Rojas, R. G.An efficient method to evaluate the surface fields excited on an electrically large dielectric-coated circular cylinder is presented. The efficiency of the method results from the circumferentially propagating representation of the Green’s function as well as its efficient numerical evaluation along a steepest descent path. The circumferentially propagating series representation of the appropriate Green’s function is obtained from its radially propagating counterpart via Watson’s transformation and then the path of integration is deformed to the steepest descent path on which the integrand decays most rapidly. Numerical results are presented that indicate that the representations obtained here are very efficient and valid even for arbitrary small separations of the source and field points. This work is especially useful in the moment-method analysis of conformal microstrip antennas where the mutual coupling effects are important.Item Open Access Tunable plexcitonic nanoparticles: a model system for studying plasmon-exciton interaction from the weak to the ultrastrong coupling regime(American Chemical Society, 2016) Balci, S.; Kucukoz, B.; Balci, O.; Karatay, A.; Kocabas, C.; Yaglioglu, G.Controlling the number of dye molecules on metallic nanoparticles, which in turn affects the magnitude of Rabi splitting energy, is crucial for obtaining hybrid metal core–organic shell nanoparticles with tunable optical properties in the visible spectrum since the magnitude of the Rabi splitting energy directly determines the strength of the coupling between plasmonic nanoparticles and dye molecules. In this work, we present a new method for the synthesis of plexcitonic nanoparticles, and thus we are able to control the number of dye molecules self-assembled on Ag nanoprisms (Ag NPs) by adjusting the concentration of dye molecules used in the synthesis. Indeed, individual dye molecules self-assemble into J-aggregates on Ag NPs. Thus, in the finite-element simulations and experimental data of the hybrid metal organic nanoparticles, we observed a transition from weak coupling to the ultrastrong coupling regime. Besides, ultrafast energy transfer between plasmonic nanoparticles and excitonic aggregated dye molecules has been extensively studied as a function of Rabi splitting energy. We observe that the lifetime of the polariton states increases with the coupling strength and the upper polaritons are short-lived, whereas the lower polaritons are long-lived. Hybrid metal–organic nanoparticles presented in this study (i) have tunable Rabi splitting energies, (ii) are easy to prepare in large quantities in aqueous medium, (iii) can be uniformly assembled on solid substrates, (iv) have resonance frequencies in the visible spectrum, and (v) have small mode volume, thus making them an excellent model system for studying light–matter interaction at nanoscale dimensions from the weak to ultrastrong coupling regime.