Browsing by Subject "Device architectures"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers(American Chemical Society, 2014) Yang X.; Mutlugun, E.; Dang, C.; Dev, K.; Gao, Y.; Tan, S.T.; Sun X.W.; Demir, Hilmi VolkanFlexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting. © 2014 American Chemical Society.Item Open Access Top-illuminated dye-sensitized solar cells with a room-temperature-processed ZnO photoanode on metal substrates and a Pt-coated Ga-doped ZnO counter electrode(IOP Publishing, 2011-01-11) Kyaw, A. K. K.; Sun, X. W.; Zhao, J. L.; Wang, J. X.; Zhao, D. W.; Wei, X. F.; Liu, X. W.; Demir, Hilmi Volkan; Wu, T.We report on top-illuminated, fluorine tin oxide/indium tin oxide-free (FTO/ITO-free), dye-sensitized solar cells (DSCs) using room-temperature- processed ZnO layers on metal substrates as the working electrodes and Pt-coated Ga-doped ZnO layers (GZO) as the counter electrodes. These top-illuminated DSCs with GZO render comparable efficiency to those employing commercial FTO counter electrodes. Despite a lower current density, the top-illuminated DSCs result in a higher fill factor than conventional DSCs due to a low ohmic loss at the electrode/semiconductor interface. The effect of metal substrate on the performance of the resulting top-illuminated DSCs is also studied by employing various metals with different work functions. Ti is shown to be a suitable metal to be used as the working electrode in the top-illuminated device architecture owing to its low ohmic loss at the electrode/semiconductor interface, minimum catalytic activity on redox reactions and high resistance to corrosion by liquid electrolytes.