Browsing by Subject "Detectors."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access A comparative study on human activity classification with miniature inertial and magnetic sensors(2011) Yüksek, Murat CihanThis study provides a comparative assessment on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. The classification techniques compared in this study are: naive Bayesian (NB) classifier, artificial neural networks (ANNs), dissimilarity-based classifier (DBC), various decision-tree methods, Gaussian mixture model (GMM), and support vector machines (SVM). The algorithms for these techniques are provided on two commonly used open source environments: Waikato environment for knowledge analysis (WEKA), a Java-based software; and pattern recognition toolbox (PRTools), a MATLAB toolbox. Human activities are classified using five sensor units worn on the chest, the arms, and the legs. Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer. A feature set extracted from the raw sensor data using principal component analysis (PCA) is used in the classification process. Three different cross-validation techniques are employed to validate the classifiers. A performance comparison of the classification techniques is provided in terms of their correct differentiation rates, confusion matrices, and computational cost. The methods that result in the highest correct differentiation rates are found to be ANN (99.2%), SVM (99.2%), and GMM (99.1%). The magnetometer is the best type of sensor to be used in classification whereas gyroscope is the least useful. Considering the locations of the sensor units on body, the sensors worn on the legs seem to provide the most valuable information.Item Open Access Deterministic and stochastic error modeling of inertial sensors and magnetometers(2012) Seçer, GörkemThis thesis focuses on the deterministic and stochastic modeling and model parameter estimation of two commonly employed inertial measurement units. Each unit comprises a tri-axial accelerometer, a tri-axial gyroscope, and a tri-axial magnetometer. In the first part of the thesis, deterministic modeling and calibration of the units are performed, based on real test data acquired from a flight motion simulator. The deterministic modeling and identification of accelerometers is performed based on a traditional model. A novel technique is proposed for the deterministic modeling of the gyroscopes, relaxing the test bed requirement and enabling their in-use calibration. This is followed by the presentation of a new sensor measurement model for magnetometers that improves the calibration error by modeling the orientation-dependent magnetic disturbances in a gimbaled angular position control machine. Model-based Levenberg-Marquardt and modelfree evolutionary optimization algorithms are adopted to estimate the calibration parameters of sensors. In the second part of the thesis, stochastic error modeling of the two inertial sensor units is addressed. Maximum likelihood estimation is employed for estimating the parameters of the different noise components of the sensors, after the dominant noise components are identified. Evolutionary and gradient-based optimization algorithms are implemented to maximize the likelihood function, namely particle swarm optimization and gradient-ascent optimization. The performance of the proposed algorithm is verified through experiments and the results are compared to the classical Allan variance technique. The results obtained with the proposed approach have higher accuracy and require a smaller sample data size, resulting in calibration experiments of shorter duration. Finally, the two sensor units are compared in terms of repeatability, present measurement noise, and unaided navigation performance.Item Open Access Fabrication and characterization of Bismuth Hall sensors at room temperature(2003) Bayer, GözdeSmall-scale Hall effect devices have attracted a great deal of research interest in recent years. It is well known that bulk single crystal of bismuth exhibit a large magnetoresistance effect and the recognition of this fact has stimulated a number of recent efforts to grow thin films of bismuth. Such films are useful in magnetic sensing applications. We fabricated Hall sensors having thickness of 30 nm and 50 nm of Bismuth using photolithography. Bismuth was deposited on to the surface of GaAs by evaporation teclinique. The properties of these sensors were then studied; dependences of the resistivity, and Hall coefficient on layer thickness were investigated at room temperature. Hall coefficients were calculated under the effect of a magnetic field. Results were then compared with the previously obtained values. Bismuth micro-Hall probes with dimensions as small as »0.25 pm x 0.25 pm produced by Focused Ion Beam (FIB) milling were also presented in this study. Hall coefficient was then calculated.Item Open Access Intelligent sensing for robot mapping and simultaneous human localization and activity recognition(2011) Altun, KeremWe consider three different problems in two different sensing domains, namely ultrasonic sensing and inertial sensing. Since the applications considered in each domain are inherently different, this thesis is composed of two main parts. The approach common to the two parts is that raw data acquired from simple sensors is processed intelligently to extract useful information about the environment. In the first part, we employ active snake contours and Kohonen’s selforganizing feature maps (SOMs) for representing and evaluating discrete point maps of indoor environments efficiently and compactly. We develop a generic error criterion for comparing two different sets of points based on the Euclidean distance measure. The point sets can be chosen as (i) two different sets of map points acquired with different mapping techniques or different sensing modalities, (ii) two sets of fitted curve points to maps extracted by different mapping techniques or sensing modalities, or (iii) a set of extracted map points and a set of fitted curve points. The error criterion makes it possible to compare the accuracy of maps obtained with different techniques among themselves, as well as with an absolute reference. We optimize the parameters of active snake contours and SOMs using uniform sampling of the parameter space and particle swarm optimization. A demonstrative example from ultrasonic mapping is given based on experimental data and compared with a very accurate laser map, considered an absolute reference. Both techniques can fill the erroneous gaps in discrete point maps. Snake curve fitting results in more accurate maps than SOMs because it is more robust to outliers. The two methods and the error criterion are sufficiently general that they can also be applied to discrete point maps acquired with other mapping techniques and other sensing modalities. In the second part, we use body-worn inertial/magnetic sensor units for recognition of daily and sports activities, as well as for human localization in GPSdenied environments. Each sensor unit comprises a tri-axial gyroscope, a tri-axial accelerometer, and a tri-axial magnetometer. The error characteristics of the sensors are modeled using the Allan variance technique, and the parameters of lowand high-frequency error components are estimated. Then, we provide a comparative study on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. Human activities are classified using five sensor units worn on the chest, the arms, and the legs. We compute a large number of features extracted from the sensor data, and reduce these features using both Principal Components Analysis (PCA) and sequential forward feature selection (SFFS). We consider eight different pattern recognition techniques and provide a comparison in terms of the correct classification rates, computational costs, and their training and storage requirements. Results with sensors mounted on various locations on the body are also provided. The results indicate that if the system is trained by the data of an individual person, it is possible to obtain over 99% correct classification rates with a simple quadratic classifier such as the Bayesian decision method. However, if the training data of that person are not available beforehand, one has to resort to more complex classifiers with an expected correct classification rate of about 85%. We also consider the human localization problem using body-worn inertial/ magnetic sensors. Inertial sensors are characterized by drift error caused by the integration of their rate output to get position information. Because of this drift, the position and orientation data obtained from inertial sensor signals are reliable over only short periods of time. Therefore, position updates from externally referenced sensors are essential. However, if the map of the environment is known, the activity context of the user provides information about position. In particular, the switches in the activity context correspond to discrete locations on the map. By performing activity recognition simultaneously with localization, one can detect the activity context switches and use the corresponding position information as position updates in the localization filter. The localization filter also involves a smoother, which combines the two estimates obtained by running the zero-velocity update (ZUPT) algorithm both forward and backward in time. We performed experiments with eight subjects in an indoor and an outdoor environment involving “walking,” “turning,” and “standing” activities. Using the error criterion in the first part of the thesis, we show that the position errors can be decreased by about 85% on the average. We also present the results of a 3-D experiment performed in a realistic indoor environment and demonstrate that it is possible to achieve over 90% error reduction in position by performing activity recognition simultaneously with localization.Item Open Access Recognition and classification of human activities using wearable sensors(2012) Yurtman, ArasWe address the problem of detecting and classifying human activities using two different types of wearable sensors. In the first part of the thesis, a comparative study on the different techniques of classifying human activities using tag-based radio-frequency (RF) localization is provided. Position data of multiple RF tags worn on the human body are acquired asynchronously and non-uniformly. Curves fitted to the data are re-sampled uniformly and then segmented. The effect of varying the relevant system parameters on the system accuracy is investigated. Various curve-fitting, segmentation, and classification techniques are compared and the combination resulting in the best performance is presented. The classifiers are validated through the use of two different cross-validation methods. For the complete classification problem with 11 classes, the proposed system demonstrates an average classification error of 8.67% and 21.30% for 5-fold and subject-based leave-one-out (L1O) cross validation, respectively. When the number of classes is reduced to five by omitting the transition classes, these errors become 1.12% and 6.52%. The system demonstrates acceptable classification performance despite that tag-based RF localization does not provide very accurate position measurements. In the second part, data acquired from five sensory units worn on the human body, each containing a tri-axial accelerometer, a gyroscope, and a magnetometer, during 19 different human activities are used to calculate inter-subject and interactivity variations in the data with different methods. Absolute, Euclidean, and dynamic time-warping (DTW) distances are used to assess the similarity of the signals. The comparisons are made using time-domain data and feature vectors. Different normalization methods are used and compared. The “best” subject is defined and identified according to his/her average distance to the other subjects.Based on one of the similarity criteria proposed here, an autonomous system that detects and evaluates physical therapy exercises using inertial sensors and magnetometers is developed. An algorithm that detects all the occurrences of one or more template signals (exercise movements) in a long signal (physical therapy session) while allowing some distortion is proposed based on DTW. The algorithm classifies the executions in one of the exercises and evaluates them as correct/incorrect, identifying the error type if there is any. To evaluate the performance of the algorithm in physical therapy, a dataset consisting of one template execution and ten test executions of each of the three execution types of eight exercise movements performed by five subjects is recorded, having totally 120 and 1,200 exercise executions in the training and test sets, respectively, as well as many idle time intervals in the test signals. The proposed algorithm detects 1,125 executions in the whole test set. 8.58% of the executions are missed and 4.91% of the idle intervals are incorrectly detected as an execution. The accuracy is 93.46% for exercise classification and 88.65% for both exercise and execution type classification. The proposed system may be used to both estimate the intensity of the physical therapy session and evaluate the executions to provide feedback to the patient and the specialist.