BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Density of state"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ab initio study of Ru-terminated and Ru-doped armchair graphene nanoribbons
    (Taylor and Francis, 2012) Sarikavak-Lisesivdin, B.; Lisesivdin, S. B.; Özbay, Ekmel
    We investigate the effects of ruthenium (Ru) termination and Ru doping on the electronic properties of armchair graphene nanoribbons (AGNRs) using first-principles methods. The electronic band structures, geometries, density of states, binding energies, band gap information, and formation energies of related structures are calculated. It is well founded that the electronic properties of the investigated AGNRs are highly influenced by Ru termination and Ru doping. With Ru termination, metallic band structures with quasi-zero-dimensional, one-dimensional and quasi-one-dimensional density of states (DOS) behavior are obtained in addition to dominant one-dimensional behavior. In contrast to Ru termination, Ru doping introduces small but measurable (12.4 to 89.6meV) direct or indirect band gaps. These results may present an additional way to produce tunable band gaps in AGNRs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    The substrate temperature dependent electrical properties of titanium dioxide thin films
    (2010) Yildiz, A.; Lisesivdin, S.B.; Kasap, M.; Mardare, D.
    Titanium dioxide thin films were obtained by a dc sputtering technique onto heated glass substrates. The relationship between the substrate temperature and the electrical properties of the films was investigated. Electrical resistivity measurements showed that three types of conduction channels contribute to conduction mechanism in the temperature range of 13-320 K. The temperature dependence of electrical resistivity between 150 and 320 K indicated that electrical conductioninthe films was controlled by potential barriers caused by depletion of carriers at grain boundaries. The conduction mechanism of the films was shifted from grain boundary scattering dominated band conduction to the nearest neighbor hopping conduction at temperatures between 55 and 150 K. Below 55 K, the temperature dependence of electrical resistivity shows variable range hopping conduction. The correlation between the substrate temperature and resistivity behaviorisdiscussed by analyzing the physical plausibility of the hopping parameters and material properties derived by applying different conduction models. With these analyses, various electrical parameters of the present samples such as barrier height, donor concentration, density of states at the Fermi level, acceptor concentration and compensation ratio were determined. Their values as a function of substrate temperature were compared. © Springer Science+Business Media, LLC 2009.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback