Browsing by Subject "Demultiplexing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Gratings in polymeric waveguides(SPIE, 2007) Mishakov, G.; Sokolov, V.; Kocabaş, Aşkın; Aydınlı, AtillaLaser-induced formation of polymer Bragg grating filters for Dense Wavelength Division Multiplexing (DWDM) applications is discussed. Acrylate monomers halogenated with both fluorine and chlorine, which possess absorption losses less than 0.25 dB/cm and wide choice of refractive indices (from 1.3 to 1.5) in the 1.5 um telecom wavelength region were used. The monomers are highly intermixable thus permitting to adjust the refractive index of the composition within ±0.0001. Moreover they are photocurable under UV exposure and exhibit high contrast in polymerization. These properties make halogenated acrylates very promising for fabricating polymeric waveguides and photonic circuits. Single-mode polymer waveguides were fabricated on silicon wafers using resistless contact lithography. Submicron index gratings have been written in polymer waveguides using holographic exposure with He-Cd laser beam (325 nm) through a phase mask. Both uniform and apodized gratings have been fabricated. The gratings are stable and are not erased by uniform UV exposure. The waveguide gratings possess narrowband reflection spectra in the 1.5 μm wavelength region of 0.4 nm width, nearly rectangular shape of the stopband and reflectivity R > 99%. The fabricated Bragg grating filters can be used for multiplexing/demultiplexing optical signals in high-speed DWDM optical fiber networks.Item Open Access Photonic band gap structures for WDM applications(IEEE, 2002) Bayındır, Mehmet; Akarca, S. S.; Özbay, EkmelA new structure by combining a single cavity and coupled-cavity waveguides (CCWs) for wavelength division multiplexing (WDM) applications was proposed. As such, a structure in which the coupling between the cavity mode and the guiding model allows to drop a selective wavelength λi was designed. The selectivity of dropping wavelength was determined by local properties of the cavity modes. Such results were said to be important for designing future ultrasmall optical circuits.