Browsing by Subject "Demand response"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Multi-stage stochastic programming for demand response optimization(Elsevier, 2020-02-19) Şahin, Munise Kübra; Çavuş, Özlem; Yaman, HandeThe increase in the energy consumption puts pressure on natural resources and environment and results in a rise in the price of energy. This motivates residents to schedule their energy consumption through demand response mechanism. We propose a multi-stage stochastic programming model to schedule different kinds of electrical appliances under uncertain weather conditions and availability of renewable energy. We incorporate appliances with chargeable and dischargeable batteries to better utilize the renewable energy sources. Our aim is to minimize the electricity cost and the residents’ dissatisfaction. We use a scenario groupwise decomposition (group subproblem) approach to compute lower and upper bounds for instances with a large number of scenarios. The results of our computational experiments show that the approach is very effective in finding high quality solutions in small computation times. We provide insights about how optimization and renewable energy combined with batteries for storage result in peak demand reduction, savings in electricity cost and more pleasant schedules for residents with different levels of price sensitivity.Item Open Access A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems(Elsevier, 2020) Kocaman, Ayşe Selin; Özyörük, Emin; Taneja, S.; Modi, V.Pumping of water for agriculture can be a flexible component of electric demand. In this study, a framework that involves scenario based stochastic programming models is developed to examine the effect of load shifting on the renewable energy system sizing for agricultural load. With the help of this framework, alternative load shifting policies are evaluated to observe how the intrinsic flexibility of agricultural load reduces the amount of investments while designing a renewable system. Using real data from India’s Gujarat region, solar and wind cases are evaluated separately to understand the coherency between these sources and the agricultural demand. The value of using a dispatchable source to help with the intermittency of the renewable sources in the systems is discussed. It is also shown that energy storage can be a convenient control mechanism for the integration of renewables; however, is an expensive substitute for demand response programs for agricultural load. Benchmarks for the incentive amounts that can be provided for alternative load shifting policies are presented.