Browsing by Subject "Deletion channels"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access A deep learning based decoder for concatenated coding over deletion channels(IEEE, 2024) Kargı, Eksal Uras; Duman, Tolga MeteIn this paper, we introduce a deep learning-based decoder designed for concatenated coding schemes over a deletion/substitution channel. Specifically, we focus on serially concatenated codes, where the outer code is either a convolutional or a low-density parity-check (LDPC) code, and the inner code is a marker code. We utilize Bidirectional Gated Recurrent Units (BI-GRUs) as log-likelihood ratio (LLR) estimators and outer code decoders for estimating the message bits. Our results indicate that decoders powered by BI-GRUs perform comparably in terms of error rates with the MAP detection of the marker code. We also find that a single network can work well for a wide range of channel parameters. In addition, it is possible to use a single BI-GRU based network to estimate the message bits via one-shot decoding when the outer code is a convolutional code. 11Code is available at https://github.com/Bilkent-CTAR-Lab/DNN-for-Deletion-ChannelItem Open Access Bounds on the capacity of random insertion and deletion-additive noise channels(IEEE, 2013) Rahmati, M.; Duman, T. M.We develop several analytical lower bounds on the capacity of binary insertion and deletion channels by considering independent uniformly distributed (i.u.d.) inputs and computing lower bounds on the mutual information between the input and output sequences. For the deletion channel, we consider two different models: i.i.d. deletion-substitution channel and i.i.d. deletion channel with additive white Gaussian noise (AWGN). These two models are considered to incorporate effects of the channel noise along with the synchronization errors. For the insertion channel case, we consider Gallager's model in which the transmitted bits are replaced with two random bits and uniform over the four possibilities independently of any other insertion events. The general approach taken is similar in all cases, however the specific computations differ. Furthermore, the approach yields a useful lower bound on the capacity for a wide range of deletion probabilities of the deletion channels, while it provides a beneficial bound only for small insertion probabilities (less than 0.25) of the insertion model adopted. We emphasize the importance of these results by noting that: 1) our results are the first analytical bounds on the capacity of deletion-AWGN channels, 2) the results developed are the best available analytical lower bounds on the deletion-substitution case, 3) for the Gallager insertion channel model, the new lower bound improves the existing results for small insertion probabilities. © 1963-2012 IEEE.Item Open Access Capacity bounds and concatenated codes over segmented deletion channels(IEEE, 2013) Wang, F.; Duman, T. M.; Aktas, D.We develop an information theoretic characterization and a practical coding approach for segmented deletion channels. Compared to channels with independent and identically distributed (i.i.d.) deletions, where each bit is independently deleted with an equal probability, the segmentation assumption imposes certain constraints, i.e., in a block of bits of a certain length, only a limited number of deletions are allowed to occur. This channel model has recently been proposed and motivated by the fact that for practical systems, when a deletion error occurs, it is more likely that the next one will not appear very soon. We first argue that such channels are information stable, hence their channel capacity exists. Then, we introduce several upper and lower bounds with two different methods in an attempt to understand the channel capacity behavior. The first scheme utilizes certain information provided to the transmitter and/or receiver while the second one explores the asymptotic behavior of the bounds when the average bit deletion rate is small. In the second part of the paper, we consider a practical channel coding approach over a segmented deletion channel. Specifically, we utilize outer LDPC codes concatenated with inner marker codes, and develop suitable channel detection algorithms for this scenario. Different maximum-a-posteriori (MAP) based channel synchronization algorithms operating at the bit and symbol levels are introduced, and specific LDPC code designs are explored. Simulation results clearly indicate the advantages of the proposed approach. In particular, for the entire range of deletion probabilities less than unity, our scheme offers a significantly larger transmission rate compared to the other existing solutions in the literature.Item Open Access An improvement of the deletion channel capacity upper bound(IEEE, 2013-10) Rahmati, M.; Duman, Tolga M.In this paper, we offer an alternative look at channels with deletion errors by considering equivalent models for deletion channels by 'fragmenting' the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. Considering a random fragmentation processes applied to binary deletion channels, we prove an inequality relation among the capacities of the original binary deletion channel and the introduced binary deletion subchannels. This inequality enables us to provide an improved upper bound on the capacity of the i.i.d. deletion channels, i.e., C(d) ≤ 0.4143(1 - d) for d ≥ 0.65. We also consider a deterministic fragmentation process suitable for the study of non-binary deletion channels which results in improved capacity upper bounds. © 2013 IEEE.Item Open Access An upper bound on the capacity of non-binary deletion channels(IEEE, 2013) Rahmati, M.; Duman, Tolga M.We derive an upper bound on the capacity of non-binary deletion channels. Although binary deletion channels have received significant attention over the years, and many upper and lower bounds on their capacity have been derived, such studies for the non-binary case are largely missing. The state of the art is the following: as a trivial upper bound, capacity of an erasure channel with the same input alphabet as the deletion channel can be used, and as a lower bound the results by Diggavi and Grossglauser in [1] are available. In this paper, we derive the first non-trivial non-binary deletion channel capacity upper bound and reduce the gap with the existing achievable rates. To derive the results we first prove an inequality between the capacity of a 2K-ary deletion channel with deletion probability d, denoted by C2K(d), and the capacity of the binary deletion channel with the same deletion probability, C2(d), that is, C2K(d) ≤ C2(d)+(1-d) log(K). Then by employing some existing upper bounds on the capacity of the binary deletion channel, we obtain upper bounds on the capacity of the 2K-ary deletion channel. We illustrate via examples the use of the new bounds and discuss their asymptotic behavior as d → 0. © 2013 IEEE.Item Open Access Upper bounds on the capacity of deletion channels using channel fragmentation(Institute of Electrical and Electronics Engineers Inc., 2015) Rahmati, M.; Duman, T. M.We study memoryless channels with synchronization errors as defined by a stochastic channel matrix allowing for symbol drop-outs or symbol insertions with particular emphasis on the binary and non-binary deletion channels. We offer a different look at these channels by considering equivalent models by fragmenting the input sequence where different subsequences travel through different channels. The resulting output symbols are combined appropriately to come up with an equivalent input-output representation of the original channel which allows for derivation of new upper bounds on the channel capacity. We consider both random and deterministic types of fragmentation processes applied to binary and nonbinary deletion channels. With two specific applications of this idea, a random fragmentation applied to a binary deletion channel and a deterministic fragmentation process applied to a nonbinary deletion channel, we prove certain inequality relations among the capacities of the original channels and those of the introduced subchannels. The resulting inequalities prove useful in deriving tighter capacity upper bounds for: 1) independent identically distributed (i.i.d.) deletion channels when the deletion probability exceeds 0.65 and 2) nonbinary deletion channels. Some extensions of these results, for instance, to the case of deletion/substitution channels are also explored. © 1963-2012 IEEE.