Browsing by Subject "Delamination"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Effects of thermoplastic coating on interfacial interactions in advanced engineering composites for aerospace applications(2023-05-03) Yavuz, Zelal; Khaligh, Aisan; Öz, Yahya; Tuncel, DönüşDelamination due to an inferior adhesion between reinforcement material and matrix in carbon fiber-reinforced thermoplastic (CFRTP) composites is a crucial problem to be solved. To this end, this study aims to overcome poor wettability between reinforcing phase, i.e., carbon fiber (CF), and thermoplastic matrix, i.e., polyetherether ketone (PEEK). Herein, CF’s surface was tailored by application of different polymeric sizing agents which have different chemical structures. Morphology and topology analyses were performed by Scanning Electron Microscope and 3D laser scanning, respectively. Later, a variety of wettability results were obtained by the sessile drop method used in Contact Angle (CA) measurements for CFs throughout application of each sizing agent applied by dip coating. Sizing materials were designed such that the chemical structure of CF’s surface could exhibit compatibility with the matrix itself. Consequently, complete wettability (CA: 0°) was achieved for CFs sized by HPEEK (CF/hydroxylated PEEK (HPEEK)) and the surface free energy (SFE) of CF was enhanced from 5.43 to 72.8 mJ/m2 while the SFE of the PEEK matrix is 40.1 mJ/m2. Moreover, sizing by HPEEK improved the average surface roughness of CF by 32% which enables optimized adhesion. Afterward, repetitive tensile tests were carried out to observe effects of improved interfacial interlocking on the mechanical properties of the final CFRTP composite. Stress–strain curves revealed that the tensile strength of CFRTP improved from 473 to 508 MPa through the sizing of CF by HPEEK whereas pristine PEEK has a much smaller tensile strength (98 MPa) than the aforementioned CF-reinforced composites.Item Open Access Energy based investigation of process parameters while drilling carbon fiber reinforced polymers(Elsevier B.V., 2016) Karpat, Yiğit; Bahtiyar, O.Carbon fiber reinforced polymers (CFRPs) are widely used in the aerospace industry due to their light weight, high strength, and low thermal conductivity. Drilling is a critical process that affects the quality of CFRP parts. This work studies the influence of process parameters on delamination and tool wear. Polycrystalline diamond helical drills are used in the experiments. It has been shown that drilling energy calculations can be used to set appropriate feed and speed parameters and for increasing drilling performance of CFRPs. The results also indicate the importance of thermal modeling of CFRP laminate for better understanding of the drilling process. © 2016 The Authors.Item Open Access The investigation of advanced thermoplastic composite materials in aerospace applications(2023-05) Yavuz, ZelalThe development of load-carrier reinforced composites is crucial in terms of a wide range of applications, such as aerospace, automotive, sports industry and so on. When these fields are taken into consideration, reducing the excessive weight of structural materials without any sacrifice in the performance is required. Thus, using reinforcement materials (e.g. carbon fibers) for polymeric matrices in composites is the most convenient way to follow. In this study, carbon fiber (CF) was used as a reinforcement material for thermoplastic based composites. Since bare CFs are too fragile to process they must be coated / sized such that the brittleness of CFs can be avoided during industrial applications. Therefore, sizing of carbon fibers is crucial for guiding them into service by protecting the CF’s surface. Yet, the traditional sizing agent (i.e. epoxy) is not suitable for handling continuous CF reinforced thermoplastic composites (CFRTPs) with high processing temperatures above 300 ℃. In this study a novel sizing agent was developed for this purpose. The effects of this sizing on the CFs’ physicochemical as well as surface properties were investigated. As a result, the impact on fiber-matrix interphase behavior can be analyzed. Moreover, the main problem for thermoplastic based composites which is the delamination between the reinforced fiber and thermoplastic matrix can be solved throughout the development of novel coating material so that inert carbon fibers can be made compatible with the matrix. In this thesis, the activation of carbon fiber’s surface, then providing a functional sizing agent and method in order to expel the present voids because of incompatibility between CF and thermoplastic matrix (i.e. Polyetherether ketone) were carried out by enhancing the adhesion. Hence, the wettability of CF by polyetherether ketone (PEEK) matrix was enhanced by altering the surface free energy of CF resulting in optimized adhesion. Thus, the delamination problem in thermoplastic based composites was solved throughout the sizing of CFs. The first part of this work consists of the elimination of current epoxy coating on the aerospace grade commercial carbon fibers. Then, the application of surface activation method was performed by acidic modification to make CFs ready for sizing process. The formation of functional groups (-COOH, -OH) on CF’s surface was achieved after degrading of present epoxy coating throughout CFs. As a result, the developed sizing agents could be binded easily onto CF’s activated surface through the hydrogen bonding. In the second part, four different polymeric sizing agents were prepared by taking the chemical compatibility with the matrix into consideration. The sizing process was performed via dip-coating method for the surface-activated CFs. The chemical and physical analyses for neat and treated CFs were carried out via microscopic and spectroscopic techniques. As a result of sizing process, the enhanced compatibility between the matrix and reinforcement material was proved by the Contact Angle Analysis and surface free energy calculations according to Young’s equation.Item Open Access Tool geometry based prediction of critical thrust force while drilling carbon fiber reinforced polymers(Shanghai University Press, 2015) Karpat, Y.; Bahtiyar O.Carbon fiber reinforced polymers (CFRPs) are known to be difficult to cut due to the abrasive nature of carbon fibers and the low thermal conductivity of the polymer matrix. Polycrystalline diamond (PCD) drills are commonly employed in CFRP drilling to satisfy hole quality conditions with an acceptable tool life. Drill geometry is known to be influential on the hole quality and productivity of the process. Considering the variety of CFRP laminates and available PCD drills on the market, selecting the suitable drill design and process parameters for the CFRP material being machined is usually performed through trial and error. In this study, machining performances of four different PCD drills are investigated. A mechanistic model of drilling is used to reveal trade-offs in drill designs and it is shown that it can be used to select suitable feed rate for a given CFRP drilling process. © 2015, Shanghai University and Springer-Verlag Berlin Heidelberg.