Browsing by Subject "Deflection"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A simple mie-resonator based meta-array with diverse deflection scenarios enabling multifunctional operation at near-infrared(De Gruyter Open, 2020) Aalizadeh, Majid; Serebryannikov, A. E.; Özbay, Ekmel; Vandenbosch, G. A. E.Deflection, a basic functionality of wavefront manipulation is usually associated with the phase-gradient metasurfaces and the classical blazed gratings. We numerically and experimentally demonstrate an unusually wideband and simultaneously wide-angle deflection achieved at near-infrared in reflection mode for a periodic (nongradient), ultrathin meta-array comprising only one silicon nanorod (Mie resonator) per period. It occurs in the range where only the first negative diffraction order and zero order may propagate. Deflection serves as the enabler for multifunctional operation. Being designed with the main goal to obtain ultra-wideband and wide-angle deflection, the proposed meta-array is also capable in spatial filtering and wide-angle splitting. Spatial filtering of various types can be obtained in one structure by exploiting either deflection in nonzero diffraction orders, or the specular-reflection (zero-order) regime. Thus, the role of different diffraction orders is clarified. Moreover, on–off switching of deflection and related functionalities is possible by changing polarization state of the incident wave. The suggested device is simple to fabricate and only requires cost-effective materials, so it is particularly appropriate for the large-area fabrication using nanoprint lithography. Ultra-wideband wide-angle and other deflection scenarios, along with the other functionalities, are promising for applications in optical communications, laser optics, sensing, detection, and imaging.Item Open Access Using micro-milled surface topography and force measurements to identify tool runout and mechanistic model coefficients(Springer UK, 2023-02-15) Masrani, Abdulrzak; Karpat, YiğitModeling the forces during micro-milling processes is directly linked to the chip load and mechanistic model parameters that are generally dependent on the tool/work combination. Tool runout, deflection, and the material’s elastic recovery mainly affect the chip load as a function of feed. Experimentally measured micro-milling forces can be employed to identify cutting force coefficients and runout parameters. However, decoupling the interplay among runout, deflection, and elastic recovery is difficult when only measured forces are considered. In this paper, machined surface topography has been considered as an additional process output to investigate the influence of runout and deflection separately. The machined surface topography was investigated using a scanning laser microscope to identify minimum chip thicknesss and runout parameters. A finite element model of tool deflection has been developed based on the end mill geometry used in the experiments. The finite element model was used to obtain a surrogate model of the tool deflection which was implemented into the mechanistic model. Nanoindentation tests were conducted on the coated WC tool to identify its material properties which are employed in the finite element model. An uncut chip thickness model is constructed by considering preceding trochoidal trajectories of the cutting edge, helix lag, tool runout, tool deflection, and the chip thickness accumulation phenomenon. The force model was validated experimentally by conducting both slot and side milling tests on commercially pure titanium (cp-Ti). The predicted cutting forces were shown to be in good agreement with the experimental cutting forces.