Browsing by Subject "Deep brain stimulation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access RF heating of deep brain stimulation implants in open-bore vertical MRI systems: a simulation study with realistic device configurations(International Society for Magnetic Resonance in Medicine, 2020) Golestanirad, L.; Kazemivalipour, Ehsan; Lampman, D.; Habara, H.; Atalar, Ergin; Rosenow, J.; Pilitsis, J.; Kirsch, J.Purpose Patients with deep brain stimulation (DBS) implants benefit highly from MRI, however, access to MRI is restricted for these patients because of safety hazards associated with RF heating of the implant. To date, all MRI studies on RF heating of medical implants have been performed in horizontal closed‐bore systems. Vertical MRI scanners have a fundamentally different distribution of electric and magnetic fields and are now available at 1.2T, capable of high‐resolution structural and functional MRI. This work presents the first simulation study of RF heating of DBS implants in high‐field vertical scanners. Methods We performed finite element electromagnetic simulations to calculate specific absorption rate (SAR) at tips of DBS leads during MRI in a commercially available 1.2T vertical coil compared to a 1.5T horizontal scanner. Both isolated leads and fully implanted systems were included. Results We found 10‐ to 30‐fold reduction in SAR implication at tips of isolated DBS leads, and up to 19‐fold SAR reduction at tips of leads in fully implanted systems in vertical coils compared to horizontal birdcage coils. Conclusions If confirmed in larger patient cohorts and verified experimentally, this result can open the door to plethora of structural and functional MRI applications to guide, interpret, and advance DBS therapy.Item Open Access Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems(John Wiley & Sons, Inc., 2021-04-07) Kazemivalipour, Ehsan; Bhusal, B.; Vu, J.; Lin, S.; Nguyen, B. T.; Kirsch, J.; Nowac, E.; Pilitsis, J.; Rosenow, J.; Atalar, Ergin; Golestanirad, L.Purpose Patients with active implants such as deep brain stimulation (DBS) devices are often denied access to MRI due to safety concerns associated with the radiofrequency (RF) heating of their electrodes. The majority of studies on RF heating of conductive implants have been performed in horizontal close-bore MRI scanners. Vertical MRI scanners which have a 90° rotated transmit coil generate fundamentally different electric and magnetic field distributions, yet very little is known about RF heating of implants in this class of scanners. We performed numerical simulations as well as phantom experiments to compare RF heating of DBS implants in a 1.2T vertical scanner (OASIS, Hitachi) compared to a 1.5T horizontal scanner (Aera, Siemens). Methods Simulations were performed on 90 lead models created from post-operative CT images of patients with DBS implants. Experiments were performed with wires and commercial DBS devices implanted in an anthropomorphic phantom. Results We found significant reduction of 0.1 g-averaged specific absorption rate (30-fold, P < 1 × 10−5) and RF heating (9-fold, P < .026) in the 1.2T vertical scanner compared to the 1.5T conventional scanner. Conclusion Vertical MRI scanners appear to generate lower RF heating around DBS leads, providing potentially heightened safety or the flexibility to use sequences with higher power levels than on conventional systems.