BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Damage prediction"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Development of a non-ordinary state-based peridynamics solver
    (2019-09) Morasata, Rico
    Damage prediction is crucial in the design process of engineering structures to ensure structural integrity. The limitations of empirical methods and the high costs associated with experimental analyses have prompted the development of numerical methods to predict the initiation and/or propagation of cracks under prescribed loading conditions. While various methods exist for failure prediction, their formulations rely on partial differential equations with spatial derivatives. As a result, these methods require special treatments in order to accurately capture the underlying failure mechanisms. To overcome these limitations, the peridynamic theory has been introduced as a novel, nonlocal continuum formulation. In contrast to the other methods, it is expressed as an integro-differential equation devoid of spatial derivatives, hence applicable to structural analyses involving discontinuities. This project aims to elaborate on the development of a solver based on a specific variant of the peridynamic formulation to investigate the behavior of two- and three-dimensional structures under certain loading conditions. The current code is developed to solve quasi-static problems related to damage initiation and propagation. In addition, it is aimed to show that peridynamics can capture local, hyperelastic deformations. The overall structure of the code is reviewed and the potential extensions of the current work are discussed.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback