Browsing by Subject "Curvature estimation"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Unknown Location and curvature estimation of "spherical" targets using a flexible sonar configuration(IEEE, 1996) Barshan, BillurA novel, flexible, three-dimensional (3-D) multi-sensor sonar system is employed to localize the center of a spherical target and estimate its radius of curvature. The interesting limiting cases for the problem under study are the point and planar targets, both of which are important for the characterization of a mobile robot's environment. A noise model is developed based on real sonar data. An extended Kalman filter (EKF) which incorporates the developed noise model is employed as an estimation tool for optimal processing of the sensor data. Simulations and experimental results are provided for specularly reflecting cylindrical targets.Item Open Access Location and curvature estimation of spherical targets using multiple sonar time-of-flight measurements(Institute of Electrical and Electronics Engineers, 1999-12) Barshan, B.A novel, flexible, three-dimensional multisensor sonar system is described to localize the center of a generalized spherical target and estimate its radius of curvature. Point, line, and planar targets are included as limiting cases which are important for the characterization of a mobile robot's environment. Sensitivity analysis of the curvature estimate with respect to measurement errors and some of the system parameters is provided. The analysis is verified experimentally for specularly reflecting cylindrical and planar targets. Typical accuracies in range and azimuth are 0.17 mm and 0.1°, respectively. Accuracy of the curvature estimate depends on the target type and system parameters such as transducer separation and operating range.