BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Curse of dimensionality"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Online nonlinear modeling for big data applications
    (2017-12) Khan, Farhan
    We investigate online nonlinear learning for several real life, adaptive signal processing and machine learning applications involving big data, and introduce algorithms that are both e cient and e ective. We present novel solutions for learning from the data that is generated at high speed and/or have big dimensions in a non-stationary environment, and needs to be processed on the y. We speci cally focus on investigating the problems arising from adverse real life conditions in a big data perspective. We propose online algorithms that are robust against the non-stationarities and corruptions in the data. We emphasize that our proposed algorithms are universally applicable to several real life applications regardless of the complexities involving high dimensionality, time varying statistics, data structures and abrupt changes. To this end, we introduce a highly robust hierarchical trees algorithm for online nonlinear learning in a high dimensional setting where the data lies on a time varying manifold. We escape the curse of dimensionality by tracking the subspace of the underlying manifold and use the projections of the original high dimensional regressor space onto the underlying manifold as the modi ed regressor vectors for modeling of the nonlinear system. By using the proposed algorithm, we reduce the computational complexity to the order of the depth of the tree and the memory requirement to only linear in the intrinsic dimension of the manifold. We demonstrate the signi cant performance gains in terms of mean square error over the other state of the art techniques through simulated as well as real data. We then consider real life applications of online nonlinear learning modeling, such as network intrusions detection, customers' churn analysis and channel estimation for underwater acoustic communication. We propose sequential and online learning methods that achieve signi cant performance in terms of detection accuracy, compared to the state-of-the-art techniques. We speci cally introduce structured and deep learning methods to develop robust learning algorithms. Furthermore, we improve the performance of our proposed online nonlinear learning models by introducing mixture-of-experts methods and the concept of boosting. The proposed algorithms achieve signi cant performance gain over the state-ofthe- art methods with signi cantly reduced computational complexity and storage requirements in real life conditions.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Yüksek boyutlu öznitelik uzayında hareket tanıma
    (IEEE, 2013-04) Adıgüzel, Hande; Erdem, Hayrettin; Ferhatosmanoǧlu, Hakan; Duygulu, Pınar
    Analyzing and interpreting human actions is an important and challenging area of computer vision. Different solutions are used for representing human actions; we prefer to use spatio-temporal interest points for motion descriptors. Besides, the space-time interest point feature space is considerably high-dimensional and it is hard to eliminate the curse of dimensionality with traditional similarity functions. We apply a matching based approach for high dimensional feature space that matches sequences to classify actions. © 2013 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback