Browsing by Subject "Crowdsourcing"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Context-aware hierarchical online learning for performance maximization in mobile crowdsourcing(Institute of Electrical and Electronics Engineers, 2018) Muller, S. K.; Tekin, Cem; Schaar, M.; Klein, A.In mobile crowdsourcing (MCS), mobile users accomplish outsourced human intelligence tasks. MCS requires an appropriate task assignment strategy, since different workers may have different performance in terms of acceptance rate and quality. Task assignment is challenging, since a worker's performance 1) may fluctuate, depending on both the worker's current personal context and the task context and 2) is not known a priori, but has to be learned over time. Moreover, learning context-specific worker performance requires access to context information, which may not be available at a central entity due to communication overhead or privacy concerns. In addition, evaluating worker performance might require costly quality assessments. In this paper, we propose a context-aware hierarchical online learning algorithm addressing the problem of performance maximization in MCS. In our algorithm, a local controller (LC) in the mobile device of a worker regularly observes the worker's context, her/his decisions to accept or decline tasks and the quality in completing tasks. Based on these observations, the LC regularly estimates the worker's context-specific performance. The mobile crowdsourcing platform (MCSP) then selects workers based on performance estimates received from the LCs. This hierarchical approach enables the LCs to learn context-specific worker performance and it enables the MCSP to select suitable workers. In addition, our algorithm preserves worker context locally, and it keeps the number of required quality assessments low. We prove that our algorithm converges to the optimal task assignment strategy. Moreover, the algorithm outperforms simpler task assignment strategies in experiments based on synthetic and real data.Item Open Access Crowdy a framework for supporting socio-technical software : ecosystems with stream-based human computation(2014) Kalender, Mert EminThe scale of collaboration between people and computers has expanded leading to new era of computation called crowdsourcing. A variety of problems can be solved with this new approach by employing people to complete tasks that cannot be computerized. However, the existing approaches are focused on simplicity and independency of tasks that fall short to solve complex and sophisticated problems. We present Crowdy, a general-purpose and extensible crowdsourcing platform that lets users perform computations to solve complex problems using both computers and human workers. The platform is developed based on the stream-processing paradigm in which operators execute on the continuos stream of data elements. The proposed architecture provides a standard toolkit of operators for computation and configuration support to control and coordinate resources. There is no rigid structure or requirement that could limit the problem-set, which can be solved with the stream-based approach. The streambased human-computation approach is implemented and verified over different scenarios. Results show that sophisticated problems can be easily solved without significant amount of work for implementation. Also possible improvements are discussed and identified that is a promising future work for the existing work.Item Open Access Fair task allocation in crowdsourced delivery(Institute of Electrical and Electronics Engineers, 2018) Basik, F.; Gedik, B.; Ferhatosmanoglu, H.; Wu, K.Faster and more cost-efficient, crowdsourced delivery is needed to meet the growing customer demands of many industries. In this work, we introduce a new crowdsourced delivery platform that takes fairness towards workers into consideration, while maximizing the task completion ratio. Since redundant assignments are not possible in delivery tasks, we first introduce a 2-phase assignment model that increases the reliability of a worker to complete a given task. To realize the effectiveness of our model in practice, we present both offline and online versions of our proposed algorithm called F-Aware. Given a task-to-worker bipartite graph, F-Aware assigns each task to a worker that maximizes fairness, while allocating tasks to use worker capacities as much as possible. We present an evaluation of our algorithms with respect to running time, task completion ratio, as well as fairness and assignment ratio. Experiments show that F-Aware runs around $10^7\times$ faster than the TAR-optimal solution and assigns 96.9% of the tasks that can be assigned by it. Moreover, it is shown that, F-Aware is able to provide a much fair distribution of tasks to workers than the best competitor algorithm. IEEEItem Open Access Online context-aware task assignment in mobile crowdsourcing via adaptive discretization(IEEE, 2022-09-22) Elahi, Sepehr; Nika, Andi; Tekin, CemMobile crowdsourcing is rapidly boosting the Internet of Things revolution. Its natural development leads to an adaptation to various real-world scenarios, thus imposing a need for wide generality on data-processing and task-assigning methods. We consider the task assignment problem in mobile crowdsourcing while taking into consideration the following: (i) we assume that additional information is available for both tasks and workers, such as location, device parameters, or task parameters, and make use of such information; (ii) as an important consequence of the worker-location factor, we assume that some workers may not be available for selection at given times; (iii) the workers' characteristics may change over time. To solve the task assignment problem in this setting, we propose Adaptive Optimistic Matching for Mobile Crowdsourcing (AOM-MC), an online learning algorithm that incurs O~(T(D¯+1)/(D¯+2)+ϵ) regret in T rounds, for any ϵ>0 , under mild continuity assumptions. Here, D¯ is a notion of dimensionality which captures the structure of the problem. We also present extensive simulations that illustrate the advantage of adaptive discretization when compared with uniform discretization, and a time- and location-dependent crowdsourcing simulation using a real-world dataset, clearly demonstrating our algorithm's superiority to the current state-of-the-art and baseline algorithms.Item Open Access Towards modeling and mitigating misinformation propagation in online social networks(2023-01) Yılmaz, TolgaMisinformation on the internet and social media has become a pressing concern due to its potential impacts on society, undermining trust and impacting human decisions on global issues such as health, energy, politics, terrorism, and disasters. As a solution to the problem, computational methods have been employed to detect and mitigate the spread of false or misleading information. These efforts have included the development of algorithms to identify fake news and troll accounts, as well as research on the dissemination of misinformation on social media platforms. However, the problem of misinformation on the web and social networks remains a complex and ongoing challenge, requiring continued attention and research. We contribute to three different solution aspects of the problem. First, we design and implement an extensible social network simulation framework called Crowd that helps model, simulate, visualize and analyze social network scenarios. Second, we gamify misinformation propagation as a cooperative game between nodes and identify how misinformation spreads under various criteria. Then, we design a network-level game where the nodes are controlled from a higher perspective. In this game, we train and test a deep reinforcement learning method based on Multi-Agent Deep Deterministic Policy Gradients and show that our method outperforms well-known node-selection algorithms, such as page-rank, centrality, and CELF, over various social networks in defending against misinformation or participating in it. Finally, we promote and propose a blockchain and deep learning hybrid approach that utilizes crowdsourcing to target the misinformation problem while providing transparency, immutability, and validity of votes. We provide the results of extensive simulations under various combinations of well-known attacks on reputation systems and a case study that compares our results with a current study on Twitter.