Browsing by Subject "Cross-validation technique"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Human activity recognition using inertial/magnetic sensor units(Springer, Berlin, Heidelberg, 2010) Altun, Kerem; Barshan, BillurThis paper provides a comparative study on the different techniques of classifying human activities that are performed using body-worn miniature inertial and magnetic sensors. The classification techniques implemented and compared in this study are: Bayesian decision making (BDM), the least-squares method (LSM), the k-nearest neighbor algorithm (k-NN), dynamic time warping (DTW), support vector machines (SVM), and artificial neural networks (ANN). Daily and sports activities are classified using five sensor units worn by eight subjects on the chest, the arms, and the legs. Each sensor unit comprises a triaxial gyroscope, a triaxial accelerometer, and a triaxial magnetometer. Principal component analysis (PCA) and sequential forward feature selection (SFFS) methods are employed for feature reduction. For a small number of features, SFFS demonstrates better performance and should be preferable especially in real-time applications. The classifiers are validated using different cross-validation techniques. Among the different classifiers we have considered, BDM results in the highest correct classification rate with relatively small computational cost. © 2010 Springer-Verlag Berlin Heidelberg.Item Open Access Human activity recognition using tag-based localization(IEEE, 2012-04) Yurtman, Aras; Barshan, BarshanThis paper provides a comparative study on the different techniques of classifying human activities using a tag-based radio-frequency (RF) localization system. Non-uniformly-sampled data containing position measurements of the tags on the body is first converted to a uniformly-sampled one using different curve-fitting algorithms. Then, the data is partitioned into segments. Finally, various classification techniques are applied to classify human activities. Curve-fitting, segmentation, and classification methods are compared using different cross-validation techniques and the combination resulting in the best performance is presented. The results indicate that the system demonstrates acceptable performance despite the fact that tag-based RF localization is not very accurate.