BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Cross-ambiguity function (CAF)"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • No Thumbnail Available
    ItemOpen Access
    Cross-ambiquity function domain multipath channel parameter estimation
    (Elsevier, 2011-11-23) Guldogan, M. B.; Arıkan, Orhan
    A new array signal processing technique is proposed to estimate the direction-of-arrivals (DOAs), time delays, Doppler shifts and amplitudes of a known waveform impinging on an array of antennas from several distinct paths. The proposed technique detects the presence of multipath components by integrating cross-ambiguity functions (CAF) of array outputs, hence, it is called as the cross-ambiguity function direction finding (CAF-DF). The performance of the CAF-DF technique is compared with the space-alternating generalized expectation-maximization (SAGE) and the multiple signal classification (MUSIC) techniques as well as the Cramer-Rao lower bound. The CAF-DF technique is found to be superior in terms of root-mean-squared-error (rMSE) to the SAGE and MUSIC techniques. (
  • No Thumbnail Available
    ItemOpen Access
    Detection of sparse targets with structurally perturbed echo dictionaries
    (Elsevier, 2013) Guldogan, M. B.; Arıkan, Orhan
    In this paper, a novel algorithm is proposed to achieve robust high resolution detection in sparse multipath channels. Currently used sparse reconstruction techniques are not immediately applicable in multipath channel modeling. Performance of standard compressed sensing formulations based on discretization of the multipath channel parameter space degrade significantly when the actual channel parameters deviate from the assumed discrete set of values. To alleviate this off-grid problem, we make use of the particle swarm optimization (PSO) to perturb each grid point that reside in each multipath component cluster. Orthogonal matching pursuit (OMP) is used to reconstruct sparse multipath components in a greedy fashion. Extensive simulation results quantify the performance gain and robustness obtained by the proposed algorithm against the off-grid problem faced in sparse multipath channels.
  • No Thumbnail Available
    ItemOpen Access
    Particle swarm optimization based channel identification in cross-ambiguity domain
    (IEEE, 2010) Güldoğan, Mehmet Burak; Arıkan, Orhan
    In this paper, a new array signal processing technique by using particle swarm optimization (PSO) is proposed to identify multipath channel parameters. The proposed technique provides estimates to the channel parameters by finding a global minimum of an optimization problem. Since the optimization problem is formulated in the cross-ambiguity function (CAF) domain of the transmitted signal and the received array outputs, the proposed technique is called as PSO-CAF. The performance of the PSO-CAF is compared with the space alternating generalized expectation maximization (SAGE) technique and with another recently proposed PSO based technique for various SNR values. Simulation results indicate the superior performance of the PSO-CAF technique over mentioned techniques for all SNR values. ©2010 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our
privacy policy.

Customize